Skip to main content
Log in

Achieving high strain rate superplasticity in cast 7075Al alloy via friction stir processing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cast 7075Al alloys under as-cast and homogenized conditions were subjected to single-pass friction stir processing (FSP). FSP converted the coarse as-cast structure to the fine-grained structure with a grain size of 2.5–3.2 μm. A pre-homogenization prior to FSP was beneficial to the generation of a more uniform microstructure in the FSP sample with smaller particles and grains. Both FSP samples exhibited high strain rate superplasticity at 1 × 10−2 s−1 and 450 °C. Cavitation developed at the particles and the grain triple junctions. The superplasticity of the FSP sample was significantly improved by the pre-homogenization prior to FSP, with a maximum superplasticity of 890% being observed, due to reduced particle size. The analyses of the superplastic data and scanning electronic microscopic (SEM) examinations indicated that grain boundary sliding is the main deformation mechanism for the FSP 7075Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barnes AJ (1994) Mater Sci Forum 170–172:701

    Article  Google Scholar 

  2. Pilling J, Ridley N (1989) Superplasticity in crystalline solids. The Institute of Metals, London, p 214

    Google Scholar 

  3. Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1991) GB Patent Application No. 9125978.8

  4. Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK (2000) Scripta Mater 42:163

    Article  CAS  Google Scholar 

  5. Mishra RS, Ma ZY (2005) Mater Sci Eng R50:1

    Article  CAS  Google Scholar 

  6. Berbon PB, Bingel WH, Mishra RS, Bampton CC, Mahoney MW (2001) Scripta Mater 44:61

    Article  CAS  Google Scholar 

  7. Ma ZY, Mishra RS, Mahoney MW (2002) Acta Mater 50:4419

    Article  CAS  Google Scholar 

  8. Ma ZY, Mishra RS (2003) Acta Mater 51:3551

    Article  CAS  Google Scholar 

  9. Dutta A, Charit L, Johannes LB, Mishra RS (2005) Mater Sci Eng A 395:173

    Article  Google Scholar 

  10. Johannes LB, Mishra RS (2007) Mater Sci Eng A 464:255

    Article  Google Scholar 

  11. Ma ZY, Mishra RS, Mahoney MW (2004) Scripta Mater 50:931

    Article  CAS  Google Scholar 

  12. Charit I, Mishra RS (2005) Acta Mater 53:4211

    Article  CAS  Google Scholar 

  13. Johannes LB, Charit I, Mishra RS, Verma R (2007) Mater Sci Eng A 464:351

    Article  Google Scholar 

  14. Sato YS, Urata M, Kokawa H, Ikeda K, Enomoto M (2001) Scripta Mater 45:109

    Article  CAS  Google Scholar 

  15. Benavides S, Li Y, Murr LE, Brown D, Mcclure JC (1999) Scripta Mater 41:809

    Article  CAS  Google Scholar 

  16. Liu G, Murr LE, Niou CS, Mcclure JC, Vega FR (1997) Scripta Mater 37:355

    Article  CAS  Google Scholar 

  17. Seidel TU, Reynolds AP (2001) Metall Mater Trans 32A:2879

    Article  CAS  Google Scholar 

  18. Li Y, Murr LE, Mcclure JC (1999) Scripta Mater 40:1041

    Article  CAS  Google Scholar 

  19. Liu HJ, Fujii H, Maeda M, Nogi K (2004) J Mater Sci Technol 20:103

    CAS  Google Scholar 

  20. Liu FC, Ma ZY (2008) Scripta Mater 58:667

    Article  CAS  Google Scholar 

  21. Sato YS, Urata M, Kokawa H (2002) Metall Mater Trans 33A:625

    Article  Google Scholar 

  22. Chen YC, Liu HJ, Feng JC (2006) Mater Sci Eng A 420:21

    Article  Google Scholar 

  23. Mahoney MW, Rhodes CG, Fiulintoff JG, Spruling RA, Bingel WH (1998) Metall Mater Trans 29A:1955

    Article  CAS  Google Scholar 

  24. Bae DH, Ghosh AK (2002) Acta Mater 50:511

    Article  CAS  Google Scholar 

  25. Mishra RS, Bieler TR, Mukherjee AK (1995) Acta Metall Mater 43:877

    Article  CAS  Google Scholar 

  26. Arieli A, Mukherjee AK (1980) Mater Sci Eng 45:61

    Article  Google Scholar 

  27. Ball A, Hutchinson MW (1969) Metal Sci J 3:1

    Article  Google Scholar 

  28. Shin DH, Park KT (1999) Mater Sci Eng A 268:55

    Article  Google Scholar 

  29. Chokshi AH (1997) Mater Sci Forum 89:233

    Google Scholar 

  30. Park KT, Myung SH, Shin DH, Lee CS (2004) Mater Sci Eng A 371:178

    Article  Google Scholar 

  31. Pandey MC, Wadsworth J, Mukherjee AK (1988) J Mater Sci 23:3509. doi:https://doi.org/10.1007/BF00540488

    Article  CAS  Google Scholar 

  32. Yasuda HY, Hiraga K (1997) Mater Sci Eng A 234:343

    Article  Google Scholar 

  33. Ghosh AK (1982) In: Hanson H, Horsewell A, Leffers T, Lilholt H (eds) Deformation of polycrystals: mechanisms and microstructures. Riso National Laboratory, Roskilde, Denmark, p 27

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support of (a) the National Outstanding Young Scientist Foundation with Grant No. 50525103, (b) the National Basic Research Program of China under Grant No. 2006CB605205, (c) the National High-tech Research Program under Grant No. 2006AA03Z111, and (d) the Hundred Talents Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F.C., Ma, Z.Y. Achieving high strain rate superplasticity in cast 7075Al alloy via friction stir processing. J Mater Sci 44, 2647–2655 (2009). https://doi.org/10.1007/s10853-009-3346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3346-6

Keywords

Navigation