Skip to main content

Advertisement

Log in

Incorporation of waste materials into portland cement clinker synthesized from natural raw materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For every ton of portland cement that is manufactured, approximately half a ton of carbon dioxide is released from calcining limestone. One method of reducing the carbon dioxide from portland cement production is to reduce or eliminate the use of limestone through replacement with calcium oxide-bearing waste materials. In this study, portland cement clinker was synthesized using minimal limestone content and maximal waste material content, specifically fly ash and blast furnace slag. The synthetic cements were characterized using X-ray diffraction, scanning electron microscopy, and isothermal calorimetry. Results show that portland cement clinker can be successfully synthesized from a maximam of 27.5% fly ash and 35% slag. The synthetic cements possessed early-age hydration behavior similar to a commercial Type I/II portland cement. However, the presence of sulfur impurities contained in waste materials significantly affected phase formation in portland cement clinker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In cement chemistry notation, oxides are abbreviated by the first capital letter: C = CaO, S = SiO2, A = Al2O3, F = Fe2O3, H = H2O, and $ = SO3.

References

  1. Mindess S, Young JF, Darwin D (2003) Concrete, 2nd edn. Pearson Education, Inc, Upper Saddle River, NJ

    Google Scholar 

  2. Hendricks CA, Worrell E, Price L, Martin N, Ozawa Meida L, de Jager D, Riemer P (1998) Emission reduction of greenhouse gases from the cement industry. Proceedings of the 4th international conference on greenhouse gas control technologies, Interlaken, Austria, IEA GHG R&D Programme, UK

  3. Romano JS, Rodrigues FA, Bernardi LT, Rodrigues JA, Segre N (2006) J Mater Sci 41:1775. doi:https://doi.org/10.1007/s10853-006-2922-2

    Article  CAS  Google Scholar 

  4. Singh M, Garg M (2000) Cem Concr Res 30:571

    Article  CAS  Google Scholar 

  5. Singh M, Upadhayay SN, Prasad PM (1996) Waste Manage 16:665

    Article  CAS  Google Scholar 

  6. Shih PH, Chang JE, Chiang LC (2003) Cem Concr Res 33:1831

    Article  CAS  Google Scholar 

  7. Komljenovic M, Jovanovic N, Petrasinovic-Stojkanovic LJ, Bascarevic Z, Rosic A (2007) Fly ash as an alternative raw materials for portland cement clinker synthesis. Proceedings of the 12th international congress on the chemistry of cement, Montreal, Canada

  8. Monshi A, Asgarani MK (1999) Cem Concr Res 29:1373

    Article  CAS  Google Scholar 

  9. ASTM C 618 (2005) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. American society of testing and materials, West Conshohocken, Pennsylvania

  10. Fierens P, Trilocq J (1983) Cem Concr Res 13:267

    Article  CAS  Google Scholar 

  11. Bogue RH (1929) Ind Eng Chem Res 1:192

    CAS  Google Scholar 

  12. Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford, London

    Book  Google Scholar 

  13. ASTM C 150 (2005) Standard specification for portland cement. American society of testing and materials, West Conshohocken, Pennsylvania

  14. Richerson DW (1992) Modern ceramic engineering: properties, processing, and use in design, 2nd edn. Marcel Dekker, Inc, New York

    Google Scholar 

  15. Fierens P, Trilocq J (1983) Cem Concr Res 13:41

    Article  CAS  Google Scholar 

  16. Mohamed BM, Sharp JH (2002) Thermochimica Acta 388:105

    Article  CAS  Google Scholar 

  17. Stephan D, Whilhelm P (2004) J Inorg Gen Chem 630:1477

    CAS  Google Scholar 

  18. JCPDS, International Centre for Diffraction Data (1989) Powder diffraction file search manual (Hanawalt method): Inorganic

  19. Stutzman PE, Leigh S (2002) NIST Tech Note 1441:44

    Google Scholar 

  20. Young RA (1995) In: Young RA (ed) IUCr monographs of crystallography: the Rietveld method, vol 5. Oxford University Press, New York

    Google Scholar 

  21. Whitfield PS, Mitchell LD (2003) J Mater Sci 38:4415. doi: https://doi.org/10.1023/A:1026363906432

    Article  CAS  Google Scholar 

  22. Stutzman P (2004) Cem Concr Compos 26:957

    Article  CAS  Google Scholar 

  23. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Biophotonics Int 11:36

    Google Scholar 

  24. Rasband WS (1997–2007) ImageJ. US National Institutes of Health, Bethesda, Maryland, USA. https://doi.org/rsb.info.nih.gov/ij/

  25. Lydon JW (2005) The measurement of the modal mineralogy of rocks from SEM imagery: the use of Multispec© and ImageJ freeware. Geological Survey of Canada, Open File 4941:37

    Google Scholar 

  26. Gartner EM, Young JF, Damidot DA, Jawed I (2002) In: Bensted J, Barnes P (eds) Structure and performance of cements. Spon Press, New York

    Google Scholar 

  27. Odler I (1998) In: Hewlett PC (ed) Lea’s chemistry of cement and concrete. Arnold, London

    Google Scholar 

  28. ASTM C 204 (2007) Standard test methods for fineness of hydraulic cement by air-permeability apparatus. American society of testing and materials, West Conshohocken, Pennsylvania

  29. Uda S, Asakura E, Nagashima M (1998) J Am Ceram Soc 81:725

    Article  CAS  Google Scholar 

  30. Chen IA, Juenger MCG (in press) Int J Appl Ceram Technol. doi:https://doi.org/10.1111/j.1744-7402.2008.02267.x

    Article  CAS  Google Scholar 

  31. ASTM C 1365 (2006) Standard test method for determination of the proportion of phases in portland cement and portland-cement clinker using X-ray powder diffraction analysis. American society of testing and materials, West Conshohocken, Pennsylvania

  32. Lerch CW (1947) Proc Am Soc Test Mater 46:1252

    Google Scholar 

  33. Bentz DP, Garboczi EJ, Haecker CJ, Jensen OM (1999) Cem Concr Res 29:1663

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors express their thanks to the National Science Foundation for financial support (Grant No. CMMI 0448983), Texas Lehigh Cement Company for providing natural raw materials, Mr. Paul Stutzman from NIST for providing the phase lattice files used in Rietveld analysis, Ryan Chancey, a graduate student in our lab, for assistance with the Rietveld and multispectral image analysis, and Katherine McKeever, a former graduate student in our lab, for establishing the synthesis procedures for the four major cement phases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irvin A. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, I.A., Juenger, M.C.G. Incorporation of waste materials into portland cement clinker synthesized from natural raw materials. J Mater Sci 44, 2617–2627 (2009). https://doi.org/10.1007/s10853-009-3342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3342-x

Keywords

Navigation