Skip to main content
Log in

Filament poisoning at typical carbon nanotube deposition conditions by hot-filament CVD

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on the poisoning of tungsten filaments during the hot-filament chemical vapour deposition process at typical carbon nanotube (CNT) deposition conditions and filament temperatures ranging from 1400 to 2000 °C. The morphological and structural changes of the filaments were investigated using scanning electron microscopy and X-ray diffraction, respectively. Our results conclusively show that the W-filament is not stable during the carburization process and that both mono- and ditungsten-carbides form within the first 5 min. Cracks and graphitic microspheres form on the carbide layer during the first 15 min at the temperatures ≥1600 °C. The microspheres subsequently coalesce to form a graphite layer, encapsulating a fully carburized filament at the temperature of 2000 °C after 60 min, which inhibits the catalytic activity of the filament to produce atomic hydrogen. The structural changes of the filament also induce variations in its temperature, illustrating the instability of the filament during the deposition of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moustakas TD (1989) Solid State Ionics 32–33:861

    Article  Google Scholar 

  2. Park SS, Lee JY (1993) J Mater Sci 28:1799. doi:https://doi.org/10.1007/BF00595748

    Article  CAS  Google Scholar 

  3. Sein H, Ahmed W, Hassan U, Ali N, Cracio JJ, Jackson MJ (2002) J Mater Sci 37:5057. doi:https://doi.org/10.1023/A:1021043817134

    Article  CAS  Google Scholar 

  4. Fortunato W, Chiquito AJ, Galzerani JC, Moro JR (2007) J Mater Sci 42:7331. doi:https://doi.org/10.1007/s10853-007-1575-0

    Article  CAS  Google Scholar 

  5. Rastogi AC, Desu SB (2005) Polymer 46:3440

    Article  CAS  Google Scholar 

  6. Filonovich SA, Ribeiro M, Rolo AG, Alpuim P (2008) Thin Solid Films 516:576

    Article  CAS  Google Scholar 

  7. Weissenbacher R, Haubner R, Aigner K, Lux B (2002) Diamond Relat Mater 11:191

    Article  CAS  Google Scholar 

  8. Pal S, Jacob C (2006) J Mater Sci 41:5429. doi:https://doi.org/10.1007/s10853-006-0270-x

    Article  CAS  Google Scholar 

  9. Dillon AC, Mahan AH, Alleman JL, Heben MJ, Parilla PA, Jones KM (2003) Thin Solid Films 430:292

    Article  CAS  Google Scholar 

  10. Sommer M, Smith FW (1990) J Mater Res 511:2433

    Article  Google Scholar 

  11. Van der Werf CHM, Van Veenendaal PATT, Van Veen MK, Hardeman AJ, Rusche MYS, Rath JK, Schropp REI (2003) Thin Solid Films 430:46

    Article  Google Scholar 

  12. Roger J, Audubert F, Petitcorps YL (2008) J Mater Sci 43:3938. doi:https://doi.org/10.1007/s10853-007-2334-y

    Article  CAS  Google Scholar 

  13. Kromka A, Janίk J, Šatka A, Pavlov J, Červeň I (2001) Acta Physica Slovaca 51:359

    CAS  Google Scholar 

  14. Sommer M, Mui K, Smith FW (1989) Solid State Commun 69:775

    Article  CAS  Google Scholar 

  15. Schwarz S, Zeiler E, Rosiwal SM, Singer RF (2002) Mater Sci Eng A 335:236

    Article  Google Scholar 

  16. Okoli S, Haubner R, Lux B (1991) Surf Coat Technol 47:585

    Article  CAS  Google Scholar 

  17. Matsubara H, Sakuma T (1990) J Mater Sci 25:4472. doi:https://doi.org/10.1007/BF00581110

    Article  CAS  Google Scholar 

  18. Davidson CF, Alexander GB, Wadsworth ME (1979) Metall Trans A 10A:1059

    Article  CAS  Google Scholar 

  19. Wolden C, Gleason KK (1994) J Appl Phys 62:3102

    Google Scholar 

  20. Arendse CJ, Malgas GF, Scriba MR, Cummings FR, Knoesen D (2007) J Nanosci Nanotechnol 7:3638

    Article  CAS  Google Scholar 

  21. International Centre for Diffraction Data (ICDD): W (89-3012), W2C (79-0743), WC (89-2727) and graphite (75-1621)

  22. Vieira SMC, Rego CA, Birkett PR (2008) Diamond Relat Mater 17:100

    Article  CAS  Google Scholar 

  23. Hernberg R, Li DM, Mäntylä T (1998) Diamond Relat Mater 7:1709

    Article  Google Scholar 

  24. Langmuir L (1912) J Am Chem Soc 34:1310

    Article  CAS  Google Scholar 

  25. Honda S, Katayama M, Lee K, Ikuno T, Ohkura S, Oura K, Furuta H, Hirao T (2003) Jpn J Appl Phys 42:L441

    Article  CAS  Google Scholar 

  26. Seo HK, Ansari SG, Kim GS, Kim YS, Shin HS (2004) J Mater Sci 39:5771. doi:https://doi.org/10.1023/B:JMSC.0000040088.09431.e6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Department of Science and Technology, the National Research Foundation and the Council for Scientific and Industrial Research (Project No. HGERA2S) of South Africa. The authors are especially thankful to Mr. Adrian Josephs (Microscopy Unit, University of the Western Cape) for his assistance with the SEM measurements and sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. J. Arendse or G. F. Malgas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliphant, C.J., Arendse, C.J., Malgas, G.F. et al. Filament poisoning at typical carbon nanotube deposition conditions by hot-filament CVD. J Mater Sci 44, 2610–2616 (2009). https://doi.org/10.1007/s10853-009-3341-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3341-y

Keywords

Navigation