Skip to main content
Log in

Photoluminescence properties of pyrolytic boron nitride

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on spectroscopic study of pyrolytic hBN (pBN) by means of time- and energy-resolved photoluminescence methods. A high purity pBN samples (though low crystallinity) allow complementary information about excited states involved into the luminescence process. We affirm our recent conclusions about the impurity-related nature of most of fluorescence bands in microcrystalline hBN. In addition, a broad band centred at 3.7 eV previously not considered because of its superposition with an intense structured impurity emission is attributed to the radiative recombination of deep DAPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Watanabe K, Taniguchi T, Kanda H (2004) Nat Mater 3:404

    Article  CAS  Google Scholar 

  2. Jaffrennou P, Barjon J, Lauret JS, Attal-Tretout B, Ducastelle F, Loiseau A (2007) J Appl Phys 102:116102

    Article  Google Scholar 

  3. Silly MG, Jaffrennou P, Barjon J, Lauret JS, Ducastelle F, Loiseau A, Obraztsova E, Attal-Tretout B, Rosencher E (2007) Phys Rev B Condens Matter Mater Phys 75:085205

    Article  Google Scholar 

  4. Lukomskii AI, Shipilo VB, Gameza LM (1993) J Appl Spectrosc 57:607

    Article  Google Scholar 

  5. Larach S, Shrader RE (1956) Phys Rev 102:582

    Article  CAS  Google Scholar 

  6. Museur L, Kanaev AV (2008) J Appl Phys 103:103520

    Article  Google Scholar 

  7. Museur L, Anglos D, Petitet JP, Michel JP, Kanaev AV (2007) J Luminescence 127:595

    Article  CAS  Google Scholar 

  8. Kanaev AV, Petitet JP, Museur L, Marine V, Solozhenko VL, Zafiropulos V (2004) J Appl Phys 96:4483

    Article  CAS  Google Scholar 

  9. Wu J, Han W, Walukiewicz W, Ager JW, Shan W, Haller EE, Zettl A (2004) Nano Lett 4:647

    Article  CAS  Google Scholar 

  10. Yao B, Shen ZX, Liu L, Su WH (2004) J Phys Condens Matter 16:2181

    Article  CAS  Google Scholar 

  11. Solozhenko VL, Lazarenko AG, Petitet JP, Kanaev AV (2001) J Phys Chem Solids 62:1331

    Article  CAS  Google Scholar 

  12. Larach S, Shrader RE (1956) Phys Rev 104:68

    Article  CAS  Google Scholar 

  13. Museur L, Feldbach E, Kanaev A (2008) Phys Rev B 78:155204

    Article  Google Scholar 

  14. Museur L, Petitet J-P, Michel J-P, Marine W, Anglos D, Fotakis C, Kanaev AV (2008) J Appl Phys 104:093504

    Article  Google Scholar 

  15. Moore AW (1990) J Cryst Growth 106:6

    Article  CAS  Google Scholar 

  16. Le Gallet S, Chollon G, Rebillat F, Guette A, Bourrat X, Naslain R, Couzi M, Bruneel JL (2004) J Eur Ceram Soc 24:33

    Article  Google Scholar 

  17. Zimmerer G (1991) Nucl Instrum Methods Phys Res A 308:178

    Article  Google Scholar 

  18. Zimmerer G (2007) Radiat Meas 42:859

    Article  CAS  Google Scholar 

  19. Nemanich RJ, Solin SA, Martin RM (1981) Phys Rev B 23:6348

    Article  CAS  Google Scholar 

  20. Stepanov VA, Stepanov PA (1998) Opt Spectrosc 85:893

    Google Scholar 

  21. Kobayashi H, Shibata H, Tagawa S (1994) Nucl Instrum Methods Phys Res B 90:556

    Article  CAS  Google Scholar 

  22. Watanabe K, Taniguchi T, Kanda H (2004) Phys Status Solidi A 201:2561

    Article  CAS  Google Scholar 

  23. Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Science 317:932

    Article  CAS  Google Scholar 

  24. Arnaud B, Lebègue S, Rabiller P, Alouani M (2006) Phys Rev Lett 96:026402

    Article  CAS  Google Scholar 

  25. Pankove JI (1971) Optical processes in semiconductors. Dover Publications, New York

    Google Scholar 

  26. Taylor CA, Brown SW, Subramaniam V, Kidner S, Rand SC, Clarke R (1994) Appl Phys Lett 65:1251

    Article  CAS  Google Scholar 

  27. Zunger A, Katzir A, Halperin A (1976) Phys Rev B 13:5560

    Article  CAS  Google Scholar 

  28. Reshchikov MA, Yi GC, Wessels BW (1999) Phys Rev B 59:13176

    Article  CAS  Google Scholar 

  29. Remes Z, Nesladek M, Haenen K, Watanabe K, Taniguchi T (2005) Phys Status Solidi A Appl Mater Sci 202:2229

    Article  CAS  Google Scholar 

  30. Lopatin VV, Konusov FV (1992) J Phys Chem Solids 53:847

    Article  CAS  Google Scholar 

  31. Zhi CY, Bando Y, Tang CC, Golberg D, Xie RG, Sekigushi T (2005) Appl Phys Lett 86:213110

    Article  Google Scholar 

  32. Berzina B, Trinkler L, Korsak V, Krutohvostov R, Carroll DL, Ucer KB, Williams RT (2006) Phys Status Solidi B Basic Solid State Phys 243:3840

    Article  CAS  Google Scholar 

  33. Watanabe K, Taniguchi T, Kuroda T, Kanda H (2006) Appl Phys Lett 89:141902

    Article  Google Scholar 

  34. Taniguchi T, Watanabe K (2007) J Cryst Growth 303:525

    Article  CAS  Google Scholar 

  35. Zunger A, Katzir A (1975) Phys Rev B 11:2378

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the IHP-Contract HPRI-CT-1999-00040 of the European Commission. The authors are grateful to G. Stryganyuk for assistance in conducting experiments at SUPERLUMI station and to V. Solozhenko for helpful discussions and the kindly providing pyrolytic boron nitride samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Museur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Museur, L., Kanaev, A. Photoluminescence properties of pyrolytic boron nitride. J Mater Sci 44, 2560–2565 (2009). https://doi.org/10.1007/s10853-009-3334-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3334-x

Keywords

Navigation