Skip to main content
Log in

Single crystal growth in PMN-PT and PMN-PZT

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single crystal growth of lead-based piezoelectric ceramics Pb(Mg1/3Nb2/3)0.68Ti0.32O3 (PMN-32PT) and Pb(Mg1/3Nb2/3)0.42(Ti0.638Zr0.362)0.58O3 (PMN-37PT-21PZ) ceramics via templated grain growth (TGG) was investigated. (001)- and (111)-oriented BaTiO3 (BT) single crystals and (001)-oriented SrTiO3 (ST) single crystals (of approximately 2.5 × 2.5 × 1 mm) were utilized as seeds for the growth experiments. The piezoelectric single crystals were produced in a process that involves at first hot pressing of single crystal in cold isostatically pressed ceramics followed by subsequent sintering of the samples. Growth of (001)-oriented single crystals with BT seeds was observed in both PMN-32PT and PMN-37PT-21PZ matrices. The measured growth lengths were up to 140 and 65 μm, respectively. The grown (001)-oriented single crystals grown were rectangular. The measured growth lengths of the pyramidal-shaped (111) BT single crystals were up to 1 mm, which is much larger than the growth lengths of the (001) single crystals. Experiments on (001) ST-seeded single crystals were not successful. No single crystal growth was observed due to the dissolution of the ST single crystals in the PMN-PZT matrix. The differences were explained by defect-chemical considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Khan A, Meschke FA, Li T, Scotch AM, Chan HM, Harmer MP (1999) J Am Ceram Soc 82:2958

    Article  CAS  Google Scholar 

  2. Xu Z, Chen F, Xi Z, Li Z, Cao L, Feng Y, Yao X (2004) Ceram Int 30:1777

    Article  CAS  Google Scholar 

  3. Du XH, Zheng J, Belegundu U, Uchino K (1998) Appl Phys Lett 72:2421

    Article  CAS  Google Scholar 

  4. Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press Inc., London

    Google Scholar 

  5. Richter T, Denneler S, Schuh C, Suvaci E, Moos R (2008) J Am Ceram Soc 91:929

    Article  CAS  Google Scholar 

  6. Gorzkowski EP, Chan HM, Harmer MP (2006) J Am Ceram Soc 89:856

    Article  CAS  Google Scholar 

  7. King PT, Gorzkowski EP, Scotch AM, Rockosi DJ, Chan HM, Harmer MP (2003) J Am Ceram Soc 86:2182

    Article  CAS  Google Scholar 

  8. Sabolsky EM, Messing GL, Trolier-McKinstry S (2001) J Am Ceram Soc 84:2507

    Article  CAS  Google Scholar 

  9. Li T, Wu S, Khan A, Scotch AM, Chan HM, Harmer MP (1999) J Mater Res 14:3189

    Article  CAS  Google Scholar 

  10. Kwon S, Sabolsky EM, Messing GL, Trolier-McKinstry S (2005) J Am Ceram Soc 88:312

    Article  CAS  Google Scholar 

  11. Khan A, Carpenter DT, Scotch AM, Chan HM, Harmer MP (2001) J Mater Res 16:694

    Article  CAS  Google Scholar 

  12. Kwon S, Sabolsky EM, Messing GL (2001) J Am Ceram Soc 84:648

    Article  CAS  Google Scholar 

  13. Cho SJ, Kang SJL, Yoon DN (1986) Metall Trans A 17:2175

    Article  Google Scholar 

  14. Lay KW (1968) J Am Ceram Soc 51:373

    Article  CAS  Google Scholar 

  15. Hennings DFK, Jannsen R, Reyen PJL (1987) J Am Ceram Soc 70:23

    Article  CAS  Google Scholar 

  16. Seabaugh M, Suvaci E, Brahmaroutu B, Messing GL (2000) Interface Sci 8:257

    Article  CAS  Google Scholar 

  17. Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Ylmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh M, Oh KS (2004) Crit Rev Solid State Mater Sci 29:45

    Article  CAS  Google Scholar 

  18. Rehrig PW, Messing GL, Trolier-McKinstry S (2000) J Am Ceram Soc 83:2654

    Article  CAS  Google Scholar 

  19. Nicholson FA (1968) J Am Ceram Soc 51:468

    Article  Google Scholar 

  20. Brook RJ (1969) J Am Ceram Soc 52:567

    Article  CAS  Google Scholar 

  21. Moos R, Bischoff T, Menesklou W, Härdtl KH (1997) J Mater Sci 32:4247. doi:https://doi.org/10.1023/A:1018647117607

    Article  CAS  Google Scholar 

  22. Moos R, Härdtl KH (1995) J Am Ceram Soc 78:2569

    Article  CAS  Google Scholar 

  23. Moos R, Härdtl KH (1997) J Am Ceram Soc 80:2549

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the German Federal Ministry of Education and Research under BMBF grant number 03X4001A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, T., Schuh, C., Suvaci, E. et al. Single crystal growth in PMN-PT and PMN-PZT. J Mater Sci 44, 1757–1763 (2009). https://doi.org/10.1007/s10853-009-3286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3286-1

Keywords