Skip to main content

Advertisement

Log in

Effect of impurities on characteristics of ZrO2 and ZnO ceramic powders produced by spray pyrolysis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Previously it was observed that addition of impurities to a precursor solution may alter the size and morphology of the particles produced by spray pyrolysis. To investigate this further, the spray pyrolysis technique was used to prepare zirconia (ZrO2) and zinc oxide (ZnO) ceramic powders, with addition of slight amounts of NaCl in various concentrations. The results show an increase in the percentage of nondisrupted particles which corresponds to an increase in the weight percentage of NaCl in the precursor in ZrO2 powder produced at 400 °C. This effect is not repeated in ZnO powder produced at 400 °C, as the addition of NaCl to the precursor results in the disruption of individual particles into much smaller particles. As far as the morphology and strength of particles are concerned, it is concluded that the addition of NaCl to the precursor solution has a beneficiary effect on the morphology of ZrO2 particles and an adverse effect on ZnO particles, both of which are negated at a higher reactor temperature of 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Scott AJ, Nimmo W, Scott R et al (2008) J Mater Sci 43(18):6353. doi:https://doi.org/10.1007/s10853-008-2911-8

    Article  CAS  Google Scholar 

  2. Ramirez EB, Huanosta A, Sebastian JP et al (2007) J Mater Sci 42(3):901. doi:https://doi.org/10.1007/s10853-006-0004-0

    Article  CAS  Google Scholar 

  3. Eslamian M, Ashgriz N (2006) Powder Technol 167(17):149

    Article  CAS  Google Scholar 

  4. Liu T-Q, Sakurai O, Mizutani N, Kato M (1986) J Mater Sci 21:3698. doi:https://doi.org/10.1007/BF00553822

    Article  CAS  Google Scholar 

  5. Ju SH, Kim DY, Jo EB et al (2007) J Mater Sci 42(14):5369. doi:https://doi.org/10.1007/s10853-006-0903-0

    Article  CAS  Google Scholar 

  6. Krishna R, Haranath D, Singh SP et al (2007) J Mater Sci 42:10047. doi:https://doi.org/10.1007/s10853-007-2053-4

    Article  CAS  Google Scholar 

  7. Ramos-Brito F, Garcia-Hipolito M, Alejo-Armenta CA et al (2008) J Mater Sci 43(13):4527. doi:https://doi.org/10.1007/s10853-008-2644-8

    Article  CAS  Google Scholar 

  8. Attar AS, Ghamsari MS, Hajiesmaeilbaigi F et al (2008) J Mater Sci 43(5):1723. doi:https://doi.org/10.1007/s10853-007-2244-z

    Article  CAS  Google Scholar 

  9. Tani T, Madler L, Pratsinis SE (2002) J Nanopart Res 4:337

    Article  CAS  Google Scholar 

  10. Poondi D, Dobbins T, Singh J (2000) J Mater Sci 35:6237. doi:https://doi.org/10.1023/A:1026701915796

    Article  CAS  Google Scholar 

  11. Fatemi DJ, Harris VG, Browning VM et al (1998) J Appl Phys 83:6867

    Article  CAS  Google Scholar 

  12. Yin S, Akita SG, Shinozaki M et al (2008) J Mater Sci 43(7):2234. doi:https://doi.org/10.1007/s10853-007-2070-3

    Article  CAS  Google Scholar 

  13. Ming Q, Nersesyan MD, Richardson JT et al (2000) J Mater Sci 35:3599. doi:https://doi.org/10.1023/A:1004821831693

    Article  CAS  Google Scholar 

  14. Eslamian M, Ashgriz N (2009) In: Smit LJ, Van Dijk JH (eds) Powder metallurgy research trends. Nova Science Publishers, New York

    Google Scholar 

  15. Piconi C, Maccauro G (1999) Biomaterials 20:1

    Article  CAS  Google Scholar 

  16. Manicone PF, Iometti PR, Raffaelli L (2007) J Dent 35(11):819

    Article  CAS  Google Scholar 

  17. Chawla HS, Mathur VP, Gauba K, Goyal A (2001) J Indian Soc Pedod Prev Dent 19(3):107

    CAS  Google Scholar 

  18. Jayanthi GV, Zhang SC, Messing GL (1993) Aerosol Sci Technol 19:478

    Article  CAS  Google Scholar 

  19. Eslamian M, Ashgriz N (2006) Can J Chem Eng 84(5):581

    Article  CAS  Google Scholar 

  20. Chau A, Eslamian M, Ashgriz N (2008) Part Part Syst Charact 25:183

    Article  CAS  Google Scholar 

  21. Eslamian M, Ahmed M, Ashgriz N (2006) Nanotechnology 17:1674

    Article  CAS  Google Scholar 

  22. Eslamian M, Ahmed M, Ashgriz N (2009) Dry Technol 27(3):3

    Article  CAS  Google Scholar 

  23. Milosevic O, Uskokovic D, Karanovic LJ, Tomasevic-Canovic M, Trontelj M (1993) J Mater Sci 28:5211. doi:https://doi.org/10.1007/BF00570066

    Article  CAS  Google Scholar 

  24. Studenikin SA, Golego N, Cocivera M (1998) J Appl Phys 83(4):2104

    Article  CAS  Google Scholar 

  25. Eslamian M, Ashgriz N (2007) J Eng Mater Technol 129:130

    Article  CAS  Google Scholar 

  26. Okuyama K, Lenggoro IW (2003) Chem Eng Sci 58:537

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ashgriz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakic, N., Gregory, J., Eslamian, M. et al. Effect of impurities on characteristics of ZrO2 and ZnO ceramic powders produced by spray pyrolysis. J Mater Sci 44, 1977–1986 (2009). https://doi.org/10.1007/s10853-009-3282-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3282-5

Keywords