Skip to main content
Log in

Preparation of γ-Fe2O3 nanopowders by direct thermal decomposition of Fe-urea complex: reaction mechanism and magnetic properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, a novel method of producing maghemite (γ-Fe2O3) nanopowders has been developed, which can be performed by the direct thermal decomposition of an Fe–urea complex ([Fe(CON2H4)6](NO3)3) in a single step. The reaction mechanism, particle morphology, and the magnetic properties of the γ-Fe2O3 nanopowders have been studied by using thermogravimetric (TG), differential scanning calorimetry (DSC), fourier transformed infrared (FTIR) spectroscopy, elemental analysis, X-ray powder diffraction (XRD), transmission electron micrograph (TEM) observations, and magnetic measurements. Thermal analyses together with the results of XRD show that the formation of γ-Fe2O3 occurs at ~200 °C through a two-stage thermal decomposition of the [Fe(CON2H4)6](NO3)3 complex. The resulting iron oxide phases (i.e., γ-Fe2O3 and α-Fe2O3) are strongly dependent on the synthesis conditions of the [Fe(CON2H4)6](NO3)3. When the molar ratio of Fe(NO3)3 · 9H2O to CON2H4 that is used for the synthesis of [Fe(CON2H4)6](NO3)3 is 1:6 (i.e., molar ratio in stoichiometry), a mixed phase of γ-Fe2O3 and α-Fe2O3 is formed. When the molar ratio is 1:6.2 (i.e., using an excess CON2H4), on the other hand, a pure γ-Fe2O3 is obtained. Magnetic measurements show that resulting nanopowders exhibit a ferromagnetic characteristic and their maximum saturation magnetization increases from 47.2 to 67.4 emu/g with an increase in the molar ratio of Fe(NO3)3 · 9H2O to CON2H4 from 1:6 to 1:6.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yan ZJ, Xue DS (2008) J Mater Sci 43:771. doi:https://doi.org/10.1007/s10853-007-2046-3

    Article  CAS  Google Scholar 

  2. Chen XH, Song HAH (2007) J Mater Sci 42:8738. doi:https://doi.org/10.1007/s10853-007-1825-1

    Article  CAS  Google Scholar 

  3. Dhara S, Rastogi AC, Das BK (1993) J Appl Phys 74:7019

    Article  CAS  Google Scholar 

  4. Neuberger T, Schöpf B, Hofmann H, Hofmann M, Rechenberg BV (2005) J Magn Magn Mater 293:483

    Article  CAS  Google Scholar 

  5. Lominicki S, Dellinger B (2003) Environ Sci Technol 37:4254

    Article  Google Scholar 

  6. Zayat M, Monte F, Morales MP, Rosa G, Guerrero H, Serna CJ, Levy D (2003) Adv Mater 15(21):1809

    Article  CAS  Google Scholar 

  7. Grimm S, Schultz M, Barth S, Muller R (1997) J Mater Sci 32:1083. doi:https://doi.org/10.1023/A:1018598927041

    Article  CAS  Google Scholar 

  8. Mcmichael RD, Shull RD, Swartzendruber LJ, Watson RE (1992) J Magn Magn Mater 111:29

    Article  CAS  Google Scholar 

  9. Chen F, Xie Y, Zhao J, Lu G (2001) Chemosphere 44:1159

    Article  CAS  Google Scholar 

  10. Apte SK, Naik SD, Sonawane RS, Kale BB (2007) J Am Ceram Soc 90:412

    Article  CAS  Google Scholar 

  11. Prasad NK, Panda D, Singh S, Mukadam MD, Yusuf SM, Bahadur D (2005) J Appl Phys 97:10Q903

    Article  Google Scholar 

  12. Kojima K, Miyazaki M (1997) J Sol-Gel Sci Tech 8:77

    CAS  Google Scholar 

  13. Cannas C, Concas G, Falgui A, Musinu A, Spano G, Piccaluga G (2001) J Non Cryst Solids 286:64

    Article  CAS  Google Scholar 

  14. Solinas S, Piccaluga G, Morales MP, Serna CJ (2001) Acta Mater 49:2805

    Article  CAS  Google Scholar 

  15. Ortega D, Garitaonandia JS, Barrera-Solano C, Bamírez-del-Solar M, Blanco E, Domínguez M (2006) J Non Cryst Solids 352:2801

    Article  CAS  Google Scholar 

  16. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) J Am Chem Soc 123:12798

    Article  CAS  Google Scholar 

  17. Cheon J, Kang N-J, Lee S-M, Lee J-H, Yoon J-H, Oh SJ (2004) J Am Chem Soc 126:1950

    Article  CAS  Google Scholar 

  18. Ravindranathan P, Patil KC (1986) J Mater Sci Lett 5:221

    Article  CAS  Google Scholar 

  19. Li D, Wu D, Zhu J, Wang X, Lu L, Yang X (2003) J Mater Sci Lett 22:931

    Article  CAS  Google Scholar 

  20. Yang S, Yi J-H, Son S, Jang J, Altman I, Pikhitsa P, Choi M (2003) Appl Phys Lett 83:4842

    Article  CAS  Google Scholar 

  21. Inamdar SN, Haram SK (2006) J Nanosci Nanotechnol 6:2155

    Article  CAS  Google Scholar 

  22. Deshpande K, Mukasyan A, Varma A (2004) Chem Mater 16:4896

    Article  CAS  Google Scholar 

  23. Penland RB, Mizushima S, Curran C, Quagliano JV (1957) J Am Chem Soc 79:1575

    Article  CAS  Google Scholar 

  24. Nogami M, Asuha N (1993) J Mater Sci Lett 12:1705

    Article  CAS  Google Scholar 

  25. Woo K, Hong J, Choi S, Lee HW, Ahn JP, Kim CS, Lee SW (2004) Chem Mater 16:2814

    Article  CAS  Google Scholar 

  26. Jing Z (2006) Mater Lett 60:2217

    Article  CAS  Google Scholar 

  27. Morales MP, Veitemillas-Verdaguer S, Montero MI, Sema CJ, Roig A, Casas LI, Martínez B, Sandiumenge F (1999) Chem Mater 11:3058

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asuha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Wu, H.Y., Song, L. et al. Preparation of γ-Fe2O3 nanopowders by direct thermal decomposition of Fe-urea complex: reaction mechanism and magnetic properties. J Mater Sci 44, 926–930 (2009). https://doi.org/10.1007/s10853-008-3192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3192-y

Keywords

Navigation