Skip to main content

Advertisement

Log in

Moving finite-element mesh model for aiding spark plasma sintering in current control mode of pure ultrafine WC powder

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The intricate bulk and contact multiphysics of spark plasma sintering (SPS) together with the involved non-linear materials’ response make the process optimization very difficult both experimentally and computationally. The present work proposes an integrated experimental/numerical methodology, which simultaneously permits the developed SPS model to be reliably tested against experiments and to self-consistently estimate the overall set of unknown SPS contact resistances. Unique features of the proposed methodology are: (a) simulations and experiments are conducted in current control mode (SPS-CCm); (b) the SPS model couples electrothermal and displacement fields; (c) the contact multiphysics at the sliding punch/die interface is modeled during powder sintering using a moving mesh/moving boundary technique; (d) calibration and validation procedures employ both graphite compact and conductive WC powder samples. The unknown contact resistances are estimated iteratively by minimizing the deviation between predictions and on-line measurements (i.e., voltage, die surface temperature, and punch displacement) for three imposed currents (i.e., 1,900, 2,100, 2,700 A) and 20 MPa applied pressure. An excellent agreement is found between model predictions and measurements. The results show that the SPS bulk and contact multiphysics can be accurately reproduced during densification of ultrafine binderless WC powder. The results can be used to benchmark contact resistances in SPS systems applicable to graphite and conductive (WC) powder samples. The SPS bulk and contact multiphysics phenomena arising during sintering of ultrafine binderless WC powders are finally discussed. A direct correlation between sintering microstructure, sintering temperature, and heating rate is established. The developed self-consistent SPS model can be effective used as an aiding tool to design optimum SPS experiments, predict sintering microstructure, or benchmark SPS system hardware or performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi:https://doi.org/10.1007/s1085-006-6555-2

    Article  CAS  Google Scholar 

  2. Keum YT, Jeon JH, Auh KH (2002) J Ceram Proc Res 3:195

    Google Scholar 

  3. Leuenberger G, Ludwig R, Apelian D (2002) J Non-Destr Eval 21:111

    Article  Google Scholar 

  4. Zhang J, Zavaliangos A, Kraemer M, Groza JR (2002) In: Lawley A, Smugeresky JE, Smith L (eds) Process modeling in powder metallurgy and particulate materials: Proceedings of the 2002 international conference on process modeling powder metallurgy and particulate materials, Newport Beach, CA, pp 208–215, 28–29 October 2002

  5. Zhang J, Zavaliangos A, Groza JR (2003) In: International conference on powder metallurgy and particulate materials, Las Vegas

  6. Zhang J, Zavaliangos A, Groza JR (2003) In: Cornwall RG, German RM, Messing GL (eds) Proceedings of sintering 2003, Materials Research Institute, Pennsylvania State University, University Park, PA, 14–17 September 2003

  7. Zhang J, Zavaliangos A, Groza JR (2003) P/M Sci Tech Briefs 5:5

    Google Scholar 

  8. Zhang J (2003) Numerical simulation of sintering under electric field. PhD Thesis, Drexel University, Philadelphia, PA

  9. Anselmi-Tamburini U, Garay JE, Munir ZA, Tacca A, Maglia F, Spinolo G (2004) J Mater Res 19:3255

    Article  CAS  Google Scholar 

  10. Zavaliangos A, Zhang J, Krammer M, Groza JR (2004) Mater Sci Eng A 379:218

    Article  Google Scholar 

  11. Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005) Mater Sci Eng A394:139

    Article  CAS  Google Scholar 

  12. Anselmi-Tamburini U, Garay JE, Munir ZA (2005) Mater Sci Eng. A 407:24

    Article  Google Scholar 

  13. Vanmeensel K, Laptev A, Hennicke J, Vleugels J, Van der Biest O (2005) Acta Mater 53:4379

    Article  CAS  Google Scholar 

  14. Cincotti A, Locci AM, Orru’ R, Cao G (2007) AIChE J 53:703

    Article  CAS  Google Scholar 

  15. Olevsky E, Froyen L (2006) Scr Mater 55:1175

    Article  CAS  Google Scholar 

  16. Maizza G, Grasso S, Sakka Y, Noda T, Ohashi O (2007) Sci Tech Adv Mater 8:644

    Article  CAS  Google Scholar 

  17. COMSOL Multiphyscs (2006) AC/DC Module, User’s Guide Vers.3.3a, August

  18. Savvatimskiy AI (2005) Carbon 43:1115

    Article  CAS  Google Scholar 

  19. Loeb AL (1954) J Am Ceram Soc 37:96

    Article  CAS  Google Scholar 

  20. Austin JB (1941) Ceram Abstr 20:45

    Google Scholar 

  21. Sahimi M, Tsotsis TT (1999) Ind Eng Chem Res 36:3043

    Article  Google Scholar 

  22. Willims WS (1998) JOM 50:62

    Article  Google Scholar 

  23. Reeber RR, Wang K 1999) J Am Ceram Soc 82:129

    Article  CAS  Google Scholar 

  24. Toyo Tanso Co. Ltd. Tokyo private communication

  25. Holm R (1967) Electric contacts: theory and application. Springer, New York

    Book  Google Scholar 

  26. Nishimoto K, Saida K, Tsuduki R (2001) J Jpn Inst Met 65:747

    Article  CAS  Google Scholar 

  27. Luo X, Chung DDL (2001) J Tribol 123:683

    Article  Google Scholar 

  28. Xie G, Ohashi O, Yamaguchi N, Wang A (2003) Metall Mater Trans A 34:2655

    Article  Google Scholar 

  29. Bahrami M, Culham JR, Yovanovich MM (2004) J Heat Transf 126:896

    Article  CAS  Google Scholar 

  30. Bahrami M, Culham JR, Yovanovich MM, Schneider GE (2004) J Thermophys Heat Transf 18:218

    Article  CAS  Google Scholar 

  31. Song Q, Zhang W, Niel B (2005) Weld J 84:73

    Google Scholar 

Download references

Acknowledgements

This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Maizza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maizza, G., Grasso, S. & Sakka, Y. Moving finite-element mesh model for aiding spark plasma sintering in current control mode of pure ultrafine WC powder. J Mater Sci 44, 1219–1236 (2009). https://doi.org/10.1007/s10853-008-3179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3179-8

Keywords

Navigation