Skip to main content
Log in

Evaluation of elastic properties of reduced NiO-8YSZ anode-supported bi-layer SOFC structures at elevated temperatures in ambient air and reducing environments

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Elastic properties of Ni-8YSZ anode-supported bi-layer SOFC structures were studied at elevated temperatures up to 1,000 °C in both ambient air and H2 environments. The anode samples with desired porosity and microstructure were fabricated by reducing a NiO-8YSZ anode precursor structure in a gas mixture of 5% H2–95% Ar at 800 °C for selected time periods up to 8 h. The development of the essential porous microstructure in forming the Ni-8YSZ cermet phase was analyzed with SEM. It was observed that the room temperature elastic moduli and hardness of the anode samples decrease significantly with increasing fraction of reduced NiO. Since the elastic properties of fully dense Ni, NiO, and 8YSZ are comparable to each other, the decrease in the magnitude in elastic moduli and hardness is evidently due to the colossal increase in porosity in the reduced Ni-8YSZ cermet anodes because of the reduction of NiO to Ni. At elevated temperatures, the Ni-8YSZ anodes show a complex profile of Young’s modulus as a function of temperature, which is significantly different from the unreduced NiO-8YSZ samples. When studied in ambient air, the Young’s modulus of the Ni-8YSZ samples decrease slowly up to ~250 °C, then more rapidly from 250 to 550 °C, and finally it increases monotonically with the increase in temperature. However, in reducing environment, the Young’s moduli values decrease continuously throughout the temperature range. Two sets of samples of different thicknesses were studied simultaneously to highlight the effects of the sample thickness on the elastic properties of the anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Selcuk A, Atkinson A (1997) J Eur Ceram Soc 17:1523

    Article  CAS  Google Scholar 

  2. Selcuk A, Atkinson A (1999) Acta Mater 47:867

    Article  Google Scholar 

  3. Gutierrez-Mora F, Ralph JM, Routbort JL (2002) Solid State Ionics 149:177

    Article  CAS  Google Scholar 

  4. Radovic M, Lara-Curzio E (2004) J Am Ceram Soc 87:2242

    Article  CAS  Google Scholar 

  5. Radovic M, Lara-Curzio E (2004) Acta Mater 52:5747

    Article  CAS  Google Scholar 

  6. Wang Y, Walter ME, Sabolsky K, Seabaugh MM (2006) Solid State Ionics 177:1517

    Article  CAS  Google Scholar 

  7. Yu JH, Park GW, Lee S, Woo SK (2007) J Power Sources 163:926

    Article  CAS  Google Scholar 

  8. Giraud S, Canel J (2008) J Eur Ceram Soc 28:77

    Article  CAS  Google Scholar 

  9. Setoguchi T, Okamoto K, Eguchi K, Arai H (1992) J Electrochem Soc 139:2875

    Article  CAS  Google Scholar 

  10. Jiang SP, Badwal SPS (1997) J Electrochem Soc 144:3777

    Article  CAS  Google Scholar 

  11. Jiang SP, Chan SH (2004) Mater Sci Tech 20:1109

    Article  CAS  Google Scholar 

  12. Tsoga A, Naomidis A, Nikolopoulos P (1996) Acta Mater 44:3679

    Article  CAS  Google Scholar 

  13. Ramanathan S, Krishnakumar KP, De PK, Banerjee S (2004) J Mater Sci 39:3339. doi:https://doi.org/10.1023/B:JMSC.0000026934.88520.67

    Article  CAS  Google Scholar 

  14. Marinek M, Zupan K, Macek J (2000) J Power Sources 86:383

    Article  Google Scholar 

  15. Lee JH, Moon H, Lee HW, Kim J, Kim JD, Yoon KH (2002) Solid State Ionics 148:15

    Article  CAS  Google Scholar 

  16. Zhu WZ, Deevi SC (2003) Mater Sci Eng A Struct Mater 362:228

    Article  Google Scholar 

  17. Selcuk A, Atkinson A (2000) Solid State Ionics 134:59

    Article  Google Scholar 

  18. Selcuk A, Atkinson A (2000) J Am Ceram Soc 83:2029

    Article  CAS  Google Scholar 

  19. Radovic M, Lara-Curzio E, Armstrong B, Walls C (2003) Ceram Eng Sci Proc 24:329

    Article  CAS  Google Scholar 

  20. Nithyanantham T, Saraswathi NT, Biswas S, Bandopadhyay S, J Power Sources (Communicated)

  21. de Boer B, Gonzalez M, Bouwmeester HJM, Verweij H (2000) Solid State Ionics 127:269

    Article  Google Scholar 

  22. Liu C, Lebrun JL, Huntz AM (1993) Mater Sci Eng A 160:113

    Article  Google Scholar 

  23. Samuel Smart J, Greenwald S (1951) Phys Rev 82:113

    Article  Google Scholar 

  24. Toussaint CJ (1971) J Appl Cryst 4:293

    Article  CAS  Google Scholar 

  25. Wachtman JB, Jam DG (1959) J Am Ceram Soc 42:254

    Article  CAS  Google Scholar 

  26. Sakaguchi S, Murayama N, Kodama Y, Wakai F (1991) J Mater Sci Lett 10:282

    Article  CAS  Google Scholar 

  27. Adams JW, Ruh R, Mazdiyasni KS (1997) J Am Ceram Soc 80:903

    Article  CAS  Google Scholar 

  28. Roebben G, Basu B, Vleugels J, van der Biest O (2003) J Eur Ceram Soc 23:481

    Article  CAS  Google Scholar 

  29. Shimada M, Matsushita K, Kuratani S, Okamoto T, Koizumi M, Tsukuma K, Tsukidate T (1984) J Am Ceram Soc 67:C23

    Article  CAS  Google Scholar 

  30. Lakki A, Herzog R, Weller M, Schubert H, Reetz C, Gorke O, Kilo M, Borchardt G (2000) J Eur Ceram Soc 20:285

    Article  CAS  Google Scholar 

  31. Weller M, Herzog R, Kilo M, Borchardt G, Weber S, Scherrer S (2004) Solid State Ionics 175:409

    Article  CAS  Google Scholar 

  32. Weller M, Khelfaoui F, Kilo M, Taylor MA, Argirusis C, Borchardt G (2004) Solid State Ionics 175:329

    Article  CAS  Google Scholar 

  33. Ingel RP, Lewis D (1988) J Am Ceram Soc 71:265

    Article  CAS  Google Scholar 

  34. Rice RW (1994) J Mater Sci Lett 13:1261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the financial support from the United States Department of Energy project grant # DE-FG36-05GO15194. The authors sincerely thank Materials and Systems Research, Inc., Salt Lake City, USA for providing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bandopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S., Nithyanantham, T., Saraswathi, N.T. et al. Evaluation of elastic properties of reduced NiO-8YSZ anode-supported bi-layer SOFC structures at elevated temperatures in ambient air and reducing environments. J Mater Sci 44, 778–785 (2009). https://doi.org/10.1007/s10853-008-3141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3141-9

Keywords

Navigation