Journal of Materials Science

, Volume 44, Issue 2, pp 422–432 | Cite as

Comparison of Young-Laplace pore size and microscopic void area distributions in topologically similar structures: a new method for characterising connectivity in pigmented coatings

  • Patrick A. C. GaneEmail author
  • Mikko Salo
  • John P. Kettle
  • Cathy J. Ridgway


Scanning electron microscopy (SEM) combined with image analysis can provide a quantitative description of the area distribution of a porous structure, such as a paper coating. This is one of the few techniques where one can limit the measurement area strictly to the coating layer, fully excluding the base paper. It has been found that SEM cross-sectional porosity, defined as visible relative void area, and mercury porosimetry results agreed qualitatively to some degree but differed quantitatively. From an understanding of the differences in observations provided by the two methods, it is realised that comparison of void area distribution and intruded pore volume distribution, the latter including effects of entrance geometry to pores (mercury porosimetry and pore shielding), effectively describes the 2D to 3D transformation between the cross section and the pore network structure, i.e. a description of connectivity, in the unique case where the topology of the pore structure skeleton remains similar. Such structures are termed homeomorphisms. By studying the pore structural parameters of pigmented tablet structures, consisting of natural ground calcium carbonate with progressively increasing dose of latex binder, it is shown that the pore structural parameter of connectivity, and, hence, effective tortuosity/permeability, derived independently using the pore network model, Pore-Cor, can be deduced by forming the differences and correlations (convolution) between the two pore size distribution methods.


Mercury Porosimetry Pore Area Pigment Particle Scan Electron Microscopy Data Pore Network Structure 



The authors wish to thank Tiina Pöhler and Eevakaisa Vesanen, KCL, for their skilful sample preparation, SEM measurement and image processing used in this work.


  1. 1.
    Poehler T, Juvonen K, Sneck A (2006) Coating layer microstructure and loacation of binder—results from SEM analysis. In: 9th TAPPI advanced coating fundamentals symposium, Turku. Tappi Press, Atlanta, p 89–100Google Scholar
  2. 2.
    Ridgway CJ, Gane PAC (2007) J Pulp Pap Sci 33(2):71Google Scholar
  3. 3.
    Ridgway CJ, Schoelkopf J, Gane PAC (2003) Nord Pulp Pap Res J 18(4):377CrossRefGoogle Scholar
  4. 4.
    Ridgway CJ, Gane PAC (2003) Nord Pulp Pap Res J 18(1):24CrossRefGoogle Scholar
  5. 5.
    Laudone GM, Matthews GP, Gane PAC (2006) J Colloid Interface Sci 304(1):180CrossRefGoogle Scholar
  6. 6.
    Ridgway CJ, Gane PAC, Schoelkopf J (2004) Colloids Surf A 236(1–3):91CrossRefGoogle Scholar
  7. 7.
    Gane PAC, Kettle JP, Matthews GP, Ridgway CJ (1996) Ind Eng Chem Res 35(5):1753CrossRefGoogle Scholar
  8. 8.
    Ridgway CJ, Ridgway K, Matthews GP (1997) J Pharm Pharmacol 49:377CrossRefGoogle Scholar
  9. 9.
    Schoelkopf J, Ridgway CJ, Gane PAC, Matthews GP, Spielmann DC (2000) J Colloid Interface Sci 227(1):119CrossRefGoogle Scholar
  10. 10.
    Matthews GP, Ridgway CJ, Small JS (1996) Mar Petrol Geol 13(5):581CrossRefGoogle Scholar
  11. 11.
    Peat DMW, Matthews GP, Worsfold PJ, Jarvis SC (2000) Eur J Soil Sci 65Google Scholar
  12. 12.
    Ridgway CJ, Schoelkopf J, Matthews GP, Gane PAC, James PW (2001) J Colloid Interface Sci 239(2):417CrossRefGoogle Scholar
  13. 13.
    Evans M, Hastings N, Peacock B (2000) Statistical distributions. Wiley, New York, p 34Google Scholar
  14. 14.
    Ridgway CJ, Gane PAC, Schoelkopf J (2006) Transp Porous Med 63(2):239CrossRefGoogle Scholar
  15. 15.
    Darcy H (1856) Les Fontaines Publiques de la Ville de DijonGoogle Scholar
  16. 16.
    Matthews GP, Moss AK, Spearing MC, Voland F (1993) Powder Technol 76:95Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Patrick A. C. Gane
    • 1
    • 2
    Email author
  • Mikko Salo
    • 2
    • 3
  • John P. Kettle
    • 3
  • Cathy J. Ridgway
    • 1
  1. 1.Omya Development AGOftringenSwitzerland
  2. 2.Department of Forest Products TechnologyHelsinki University of Technology TKKHelsinkiFinland
  3. 3.Oy Keskuslaboratorio—Centrallaboratorium AbEspooFinland

Personalised recommendations