Skip to main content
Log in

Low-temperature sintering of ZrW2O8–SiO2 by spark plasma sintering

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Amorphous ZrW2O8 powder and amorphous SiO2 powder were prepared by a sol–gel process as raw materials, and high-density ZrW2O8–SiO2 were successfully prepared at a much lower temperature of 923 K for a much shorter holding time of 10 min by spark plasma sintering (SPS) method rather than by conventional melt-quenching method. The relative densities of 0.85ZrW2O8–0.15SiO2 and 0.70ZrW2O8–0.30SiO2 were 99.4% and 96.6%, respectively. The combined technique of a sol–gel process and SPS should enable us to prepare the varied types of high-density composites of ZrW2O8 without severe thermal cracking caused by melt-quenching. The thermal expansion properties and dielectric properties of ZrW2O8–SiO2 were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sleight AW (1995) Endeavour 19:64

    Article  CAS  Google Scholar 

  2. Mary TA, Evans JSO, Vogt T et al (1996) Science 272:90

    Article  CAS  Google Scholar 

  3. Sleight AW (1998) Inorg Chem 37:2854

    Article  CAS  Google Scholar 

  4. Evans JSO, Mary TA, Sleight AW (1998) Physica B 241–243:311

    Google Scholar 

  5. Chang LLY, Scroger MG, Phillips B (1967) J Am Ceram Soc 50:211

    Article  CAS  Google Scholar 

  6. Graham J, Wadsley AD, Weymouth JH et al (1959) J Am Ceram Soc 42:570

    Article  CAS  Google Scholar 

  7. Martinek C, Hummel FA (1968) J Am Ceram Soc 51:227

    Article  CAS  Google Scholar 

  8. Morito Y, Wang S, Ohshima Y et al (2002) J Ceram Soc Jpn 110:544

    Article  CAS  Google Scholar 

  9. Xing X, Xing Q, Yu R et al (2006) Physica B 371:81

    Article  CAS  Google Scholar 

  10. Xing Q, Xing X, Yu R et al (2005) J Cryst Growth 283:208

    Article  CAS  Google Scholar 

  11. Kameswari U, Sleight AW, Evans JSO (2000) Int J Inorg Mater 2:333

    Article  CAS  Google Scholar 

  12. Closmann C, Sleight AW, Haygarth JC (1998) J Solid State Chem 139:424

    Article  CAS  Google Scholar 

  13. Wilkinson AP, Lind C, Pattanaik S (1999) Chem Mater 11:101

    Article  CAS  Google Scholar 

  14. Anselmi-Tamburini U, Gennari S, Garay JE et al (2005) Mater Sci Eng A 394:139

    Article  Google Scholar 

  15. Nygren M, Shen Z (2003) Solid State Sci 5:125

    Article  CAS  Google Scholar 

  16. Shen Z, Johnsson M, Zhao Z et al (2002) J Am Ceram Soc 85:1921

    Article  CAS  Google Scholar 

  17. Chaim R, Shen ZJ, Nygren M (2004) J Mater Res 19:2527

    Article  CAS  Google Scholar 

  18. Cha SI, Hong SH, Kim BK (2003) Mater Sci Eng A 351:31

    Article  Google Scholar 

  19. Omori M (2000) Mater Sci Eng A 287:183

    Article  Google Scholar 

  20. Gupta TK, Jean JH (1996) J Mater Res 11:243

    Article  CAS  Google Scholar 

  21. Niwa E, Wakamiko S, Ichikawa T et al (2004) J Ceram Soc Jpn 112:271

    Article  CAS  Google Scholar 

  22. Lommens P, Meyer CD, Bruneel E et al (2005) J Eur Ceram Soc 25:3605

    Article  CAS  Google Scholar 

  23. Yang X, Xu J, Li H et al (2007) J Am Ceram Soc 90:1953

    Article  CAS  Google Scholar 

  24. Buysser KD, Lommens P, Meyer CD et al (2004) Ceram-Silik 48:139

    Google Scholar 

  25. Yang X, Cheng X, Yan X et al (2007) Compos Sci Technol 67:1167

    Article  CAS  Google Scholar 

  26. Yilmaz S (2002) J Phys 14:365

    CAS  Google Scholar 

  27. Yilmaz S, Dunand DC (2004) Compos Sci Technol 64:1895

    Article  CAS  Google Scholar 

  28. Tani J, Kimura H, Hirota K et al (2007) J Appl Polym Sci 106:3343

    Article  CAS  Google Scholar 

  29. Kanamori K, Kineri T, Fukuda R et al (2008) J Am Ceram Soc. doi:https://doi.org/10.1111/j.1551-2916.2008.02726.x

    Article  CAS  Google Scholar 

  30. Evans JSO, Mary TA, Vogt T et al (1996) Chem Mater 8:2809

    Article  CAS  Google Scholar 

  31. Bertoluzza A, Fagnano C, Morelli MA (1982) J Non-Cryst Solids 48:117

    Article  CAS  Google Scholar 

  32. Nishio K, Kawahara T, Fukuda R et al (2007) J Soc Inorg Mater Jpn 14:69

    CAS  Google Scholar 

  33. Hashimoto T, Katsube T, Morito Y (2000) Solid State Commun 116:129

    Article  CAS  Google Scholar 

  34. Hasselman DPH, Donaldson KY, Anderson EM et al (1993) J Am Ceram Soc 76:2180

    Article  CAS  Google Scholar 

  35. Lind C, Wilkinson AP (2002) J Sol–Gel Sci Technol 25:51

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully thank Mr. M. Hashimoto, Yamaguchi Prefectural Industrial Technology Institute, for helpful suggestions and numerous discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kanamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanamori, K., Kineri, T., Fukuda, R. et al. Low-temperature sintering of ZrW2O8–SiO2 by spark plasma sintering. J Mater Sci 44, 855–860 (2009). https://doi.org/10.1007/s10853-008-3128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3128-6

Keywords

Navigation