Skip to main content
Log in

SiC nanofibers by pyrolysis of electrospun preceramic polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) nanofibers of diameters as low as 20 nm are reported. The fibers were produced through the electrostatic spinning of the preceramic poly(carbomethylsilane) with pyrolysis to ceramic. A new technique was used where the preceramic was blended with polystyrene and, subsequent to electrospinning, was exposed to UV to crosslink the PS and prevent fiber flowing during pyrolysis. Electrospun SiC fibers were characterized by Fourier transform infrared spectroscopy, thermo gravimetric analysis-differential thermal analysis, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and electron diffraction. Fibers were shown to be polycrystalline and nanograined with β-SiC 4H polytype being dominant, where commercial methods produce α-SiC 3C. Pyrolysis of the bulk polymer blend to SiC produced α-SiC 15R as the dominant polytype with larger grains showing that electrospinning nanofibers affects resultant crystallinity. Fibers produced were shown to have a core–shell structure of an oxide scale that was variable by pyrolysis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Taylor G (1969) Proc R Soc Lond A 313:453

    Article  Google Scholar 

  2. Formhals A (1934) US Patent 1975504

  3. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB (2001) Polymer 42(1):261

    Article  CAS  Google Scholar 

  4. Reneker DH, Chun I (1996) Nanotechnology 7(3):216

    Article  CAS  Google Scholar 

  5. Doshi J, Reneker DH (1995) J Electrostat 35(2–3):151

    Article  CAS  Google Scholar 

  6. Jiang HL, Hu YQ, Zhao PC, Li Y, Zhu KJ (2006) J Biomed Mater Res B Appl Biomater 79B(1):50

    Article  CAS  Google Scholar 

  7. Takahashi T, Taniguchi M, Kawai T (2005) Jpn J Appl Phys 2 Lett Exp Lett 44(24–27):L860

    Article  CAS  Google Scholar 

  8. Fang X, Reneker DH (1997) J Macromol Sci Phys B 36(2):169

    Article  Google Scholar 

  9. Choi SS, Lee SG, Im SS, Kim SH, Joo YL (2003) J Mater Sci Lett 22(12):891

    Article  CAS  Google Scholar 

  10. Caruso RA, Schattka JH, Greiner A (2001) Adv Mater 13(20):1577

    Article  CAS  Google Scholar 

  11. Li D, Xia YN (2003) Nano Lett 3(4):555

    Article  CAS  Google Scholar 

  12. Jaeger R, Bergshoef MM, Batlle CMI, Schonherr H, Vancso GJ (1998) Macromol Symp 127:141

    Article  CAS  Google Scholar 

  13. He X, Zhang X, Zhang C, Zhou X, Zhou A (2001) Compos Sci Technol 61:117

    Article  CAS  Google Scholar 

  14. Nechanicky MA, Chew KW, Sellinger A, Laine RM (2000) J Eur Ceram Soc 20:441

    Article  CAS  Google Scholar 

  15. Krauthauser C, Deitzel JM, Wetze ED, O’Brien D (2003) Abstr Pap Am Chem Soc 226:U442

    Google Scholar 

  16. Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Polymer 40(26):7397

    Article  CAS  Google Scholar 

  17. Ayres C, Bowlin GL, Henderson SC, Taylor L, Shultz J, Alexander J, Telemeco TA, Simpson DG (2006) Biomaterials 27(32):5524

    Article  CAS  Google Scholar 

  18. Saulig-Wenger K, Bechelany M, Cornu D, Epicier T, Chassagneux F, Ferro G, Monteil Y, Miele PJ (2005) Phys IV France 124:99

    Article  CAS  Google Scholar 

  19. Raman V, Bhatia G, Mishra AK, Bhardwaj S, Sood KN (2006) Mater Lett 60(29–30):3906

    Article  CAS  Google Scholar 

  20. Chen D, Gilbert CJ, Zhang XF, Ritchie RO (2000) Acta Mater 48(3):659

    Article  CAS  Google Scholar 

  21. Cheng QM, Interrante LV, Lienhard M, Shen Q, Wu Z (2005) J Euro Ceram Soc 25(2–3):233

    Article  CAS  Google Scholar 

  22. Jayaseelan DD, Lee WE, Amutharani D, Zhang S, Yoshida K, Kita H (2007) J Am Ceram Soc 90:1603

    Article  CAS  Google Scholar 

  23. Ye HH, Titchenal N, Gogotsi Y, Ko F (2005) Adv Mater 17(12):1531

    Article  CAS  Google Scholar 

  24. Li J, Zhang Y, Zhong X, Yang K, Meng J, Cao X (2007) Nanotechnology 18

    Article  Google Scholar 

  25. Hasegawa Y, Iimura M, Yajima S (1980) J Mater Sci 15(3):720. doi:https://doi.org/10.1007/BF00551739

    Article  CAS  Google Scholar 

  26. Barham PJ, Keller A (1985) J Mater Sci 20(7):2281. doi:https://doi.org/10.1007/BF00556059

    Article  CAS  Google Scholar 

  27. Laine RM, Babonneau F (1993) Chem Mater 5(3):260

    Article  CAS  Google Scholar 

  28. Clade J, Seider E, Sporn D (2005) J Eur Ceram Soc 25(2–3):123

    Article  CAS  Google Scholar 

  29. Yajima S, Hayashi J, Omori M (1975) Chem Lett 9:931

    Article  Google Scholar 

  30. Thorne KJ, Johnson SE, Zheng HX, Mackenzie JD, Hawthorne MF (1994) Chem Mater 6(2):110

    Article  CAS  Google Scholar 

  31. Toreki W, Batich CD, Sacks MD, Saleem M, Choi GJ, Morrone AA (1994) Compos Sci Technol 51:145

    Article  CAS  Google Scholar 

  32. Odian G (2004) Principles of polymerization, 4th edn. Wiley, Hoboken, NJ, p 174

    Book  Google Scholar 

  33. Zuo WW, Zhu MF, Yang W, Yu H, Chen YM, Zhang Y (2005) Polym Eng Sci 45(5):704

    Article  CAS  Google Scholar 

  34. JCPDS Card File Number 75–2078

  35. Sandlin MS (1991) Master of Science. Purdue University, West Lafayette, IN

  36. JCPDS Card File Number 29–1127

  37. Chiang YM, Smyth IP, Terwilliger CD, Petuskey WT, Eastman JA (1992) Nanostruct Mater 1:235

  38. Opila E (1995) J Am Ceram Soc 78(4):1107

    Article  CAS  Google Scholar 

  39. Mogilevsky P, Boakye EE, Hay RS, Welter J, Kerans RJ (2006) J Am Ceram Soc 89(11):3481

    Article  CAS  Google Scholar 

  40. Zhu YT, Taylor ST, Stout MG, Butt DP, Lowe TC (1998) J Am Ceram Soc 81(3):655

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Air Force Office of Scientific Research Grant #F49620-04-NA-153 and the National Science Foundation through the Graduate Assistantship in Areas of National Need. The authors would also like to thank Kent Van Every for help with the FESEM and Prof. Eric Stach with help with TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Youngblood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eick, B.M., Youngblood, J.P. SiC nanofibers by pyrolysis of electrospun preceramic polymers. J Mater Sci 44, 160–165 (2009). https://doi.org/10.1007/s10853-008-3102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3102-3

Keywords

Navigation