Journal of Materials Science

, Volume 44, Issue 2, pp 492–501 | Cite as

Fluidity and microstructure of an Al–10% B4C composite

  • Z. ZhangEmail author
  • X.-G. Chen
  • A. Charette


The fluidity evolution of an Al–10 vol.% B4C experimental composite during long holding periods has been investigated by using a vacuum fluidity test. It was found that the fluidity of the composite melt decreased with the increase of the holding time. The microstructure of the fluidity samples was examined by optical metallography, quantitative image analysis, and electron microscopy. Two secondary reaction-induced phases were identified and the volume fraction changes of the solid phases during the holding periods were quantified. The relationship between the fluidity, volume fraction, and surface area of solid phase particles was established. In addition, the particle distribution along the entire length was examined in the fluidity samples. The mechanism of the particle redistribution during flow and solidification is presently discussed.


Solid Particle Particle Cluster Fluidity Test TiB2 Particle Direct Chill 



The authors would like to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Alcan Inc., Arvida Research and Development Centre (ARDC). They are also grateful to A. Simard, M. Bouchard, and G. Lemire of UQAC, Dr M. Choquette of Université Laval, and P. Plamondon and J.-P. Masse of l’École Polytechnique de Montréal for their assistance in the microstructural examination.


  1. 1.
    Lloyd DJ (1997) In: Mallick PK (ed) Composites engineering handbook. Marcel Dekker, Inc, New York, p 631Google Scholar
  2. 2.
    Chen X-G (2006) In: Gupta N, Hunt WH (eds) Proceedings of TMS 2006, symposium on solidification processing of metal matrix composites, San Antonio, USA, March 2006, p 343Google Scholar
  3. 3.
    Flemings MC (1974) Solidification processing. McGraw-Hill Book Company, New York, p 219Google Scholar
  4. 4.
    Campbell J (1999) Casting. Butterworth Heinemanth, Oxford, p 75Google Scholar
  5. 5.
    Yarandi FM, Rohatgi PK, Ray S (1993) J Mater Eng Perform 2:359CrossRefGoogle Scholar
  6. 6.
    Rohatgi P, Asthana R (2001) JOM 53:9CrossRefGoogle Scholar
  7. 7.
    Surappa MK, Rohatgi PK (1981) Metal Mater Trans B 12B:327CrossRefGoogle Scholar
  8. 8.
    Ravi VA, Frydrych DJ, Nagelberg AS (1994) AFS Trans 102:891Google Scholar
  9. 9.
    Kolsgaard A, Brusethaug S (1994) Mater Sci Tech 10:545CrossRefGoogle Scholar
  10. 10.
    Ferguson J, Kemblowski Z (1991) Applied fluid rheology. Elsevier, London, p 199Google Scholar
  11. 11.
    Gourlay C, Laukli H, Dahle A (2004) Metal Mater Trans A 35A:2881CrossRefGoogle Scholar
  12. 12.
    Laukli H, Lohne O, Arnberg L (2005) In: Tiryakioglu M, Crepeau PN (eds) Proceedings of TMS 2005, symposium on shape casting, San Francisco, USA, February 2005, p 263Google Scholar
  13. 13.
    Sannes S, Westengen H (1998) In: Mordike BL, Kainer KU (eds) Proceedings of magnesium alloys and their application, Wolfsburg, Germany, April 1998, p 223Google Scholar
  14. 14.
    Laukli H, Gourlay C, Dahle A, Lohne O (2005) Mater Sci Eng A 413–414:92CrossRefGoogle Scholar
  15. 15.
    Zhang Z, Chen X-G, Charette A (2007) J Mater Sci 42:7354. doi: CrossRefGoogle Scholar
  16. 16.
    Dahle AK, St John DH (1999) Acta Mater 47:31CrossRefGoogle Scholar
  17. 17.
    Chen X-G (2004) In: Proceedings of 14th international symposium on the packaging and transportation of radioactive materials, Berlin, Germany, 2004Google Scholar
  18. 18.
    Chen X-G (2005) In: Schlesinger ME (eds) EPD Congress 2005. TMS, San Francisco, USA, p 101Google Scholar
  19. 19.
    Viala JC, Bouix J, Gonzalez G, Esnouf C (1997) J Mater Sci 32:4559. doi: CrossRefGoogle Scholar
  20. 20.
    Kennedy AR (2002) J Mater Sci 37:317. doi: CrossRefGoogle Scholar
  21. 21.
    Pyzik AJ, Beaman DR (1995) J Am Ceram Soc 78:305CrossRefGoogle Scholar
  22. 22.
    Shorowordi KM, Laoui T, Haseeb ASMA, Celis JP, Froyen L (2003) J Mater Process Tech 142:738CrossRefGoogle Scholar
  23. 23.
    Zhang Z, Chen X-G, Charette A, Ghomashchi R (2005) In: Martin J-P (ed) Proceedings of light metals, Calgary, Canada, August 2005, p 447Google Scholar
  24. 24.
    Viala JC (2002) In: Drew RAL, Pugh MD, Brochu M (eds) Proceedings of the international symposium on metal/ceramic interactions, Montreal, Canada, August 2002, p 63Google Scholar
  25. 25.
    Gokhale AM (1990) In: Voort G (ed) ASM handbook, vol 9. The Materials Information Society, OH, p 431Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Université du Québec à ChicoutimiChicoutimiCanada

Personalised recommendations