Journal of Materials Science

, Volume 44, Issue 2, pp 469–476 | Cite as

Investigations of a controllable nanoscale coating on natural fiber system: effects of charge and bonding on the mechanical properties of textiles

  • C. Yang
  • P. GaoEmail author
  • B. Xu


A novel nano-sized copolymer nanofilm provides a unique reinforcement to the mechanical properties of natural textiles. This study reveals that a nano-sized coating provides a strong healing effect to resist the crack propagation of natural fiber surfaces. As little as 0.15 wt% addition of the nanoparticles to the cotton surface improved the fabrics’ tearing resistance by 56% and abrasion resistance by 100%. Surface analyses (SEM and AFM) demonstrated that the nanoparticles formed a uniform monolayer and after heat treatment the monolayer nanofilm covalently bonded to the substrate. This nanofilm is reliable in repeated washes due to its covalent bonding. Using time-of-flight secondary ion mass spectroscopy (TOF-SIMS), we studied the reactivity and phase-transition process of the nanoparticles as they transformed into the nanofilm. The study demonstrates the active role of the N-methylol group and the primary hydroxyl group toward the cotton surface, which modulate the rupture process of the fiber substrate; meanwhile, it demonstrates the positively charged nanoparticles have an excellent dispersibility on the negatively charged cotton surface. The result opens the possibility for various textiles to enhance their properties via an electrostatic affinity and covalent bonding of functional nanoparticles.


Cotton Fabric Cotton Fiber Fiber Surface PHEMA Durable Press 



This research work was partially supported by ITF (Hong Kong) grant No. 109.

Supplementary material

10853_2008_3094_MOESM1_ESM.doc (3.2 mb)
(DOC 3289 kb)


  1. 1.
    Mahltig B, Bo¨ttcher H (2003) J Sol-Gel Sci Technol 27:43CrossRefGoogle Scholar
  2. 2.
    Mahltig B, Fiedler D, Böttcher H (2004) J Sol-Gel Sci Technol 32:219CrossRefGoogle Scholar
  3. 3.
    Vince J, Orel B, Vilcnik A, Fir M, Surca Vuk A, Jovanovski V, Simoncic B (2006) Langmuir 22:6489CrossRefGoogle Scholar
  4. 4.
    Qian L, Sun G (2005) Ind Eng Chem Res 44:852CrossRefGoogle Scholar
  5. 5.
    Hoefnagels HF, Wu D, de With G, Ming W (2007) Langmuir 23:13158CrossRefGoogle Scholar
  6. 6.
    Service RF (2003) Science 301:909CrossRefGoogle Scholar
  7. 7.
    Tiller JC, Liao CJ, Kim L, Klibanov AM (2001) Proc Natl Acad Sci 98:5981CrossRefGoogle Scholar
  8. 8.
    Schramm C, Binder WH, Tessadri R (2004) J Sol-Gel Sci Technol 29:155CrossRefGoogle Scholar
  9. 9.
    Mahltig B, Haufe H, Bo¨ttcher H (2005) J Mater Chem 15:4385CrossRefGoogle Scholar
  10. 10.
    Mahltig B, Audenaert F, Bo¨ttcher H (2005) J Sol-Gel Sci Technol 34:103CrossRefGoogle Scholar
  11. 11.
    Salon M-CB, Abdelmouleh M, Boufi S, Belgacem MN, Gandini A (2005) J Colloid Interface Sci 289:249CrossRefGoogle Scholar
  12. 12.
    Soane DS, Offord DA, Linford MR, Millward DB, Ware W, Erskine L, Green E, Lau R (2003) US Pat Appl Publ US 2003013369, 2003Google Scholar
  13. 13.
    Alince B (2005) J Appl Polym Sci 98:1879CrossRefGoogle Scholar
  14. 14.
    Alince B, Arnoldova P, Frolik R (2000) J Appl Polym Sci 76:1677CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Yang WL, Wang CC, Wu W, Fu SK (2006) J Nanosci Nanotechnol 6:2896CrossRefGoogle Scholar
  16. 16.
    Yang C (2007) Explorations in the application of nanotechnology to improve the mechanical properties of composite materials, in “Chemistry”, The Hong Kong University of Science and Technology, Hong Kong, p 161Google Scholar
  17. 17.
    PeulaGarcia JM, HidalgoAlvarez R, delasNieves FJ (1997) Colloid Surf A 127:19CrossRefGoogle Scholar
  18. 18.
    Tsuruta LR, Lessa MM, Carmonaribeiro AM (1995) J Colloid Interface Sci 175:470CrossRefGoogle Scholar
  19. 19.
    Goldfinger G (1969) Clean surfaces: their preparation and characterization for interfacial studies. Dekker, New YorkGoogle Scholar
  20. 20.
    Young RA, Rowell RM (1986) Cellulose: structure, modification, and hydrolysis. Wiley, New YorkGoogle Scholar
  21. 21.
    Pizarro GDC, Jeria M, Marambio OG, Huerta M, Rivas BL (2005) J Appl Polym Sci 98:1903CrossRefGoogle Scholar
  22. 22.
    Isik B, Guenay Y (2004) Colloid Polym Sci 287:693CrossRefGoogle Scholar
  23. 23.
    Kawaguchi H, Sugi Y, Ohtsuka Y (1981) J Appl Polym Sci 26:1649CrossRefGoogle Scholar
  24. 24.
    Yan CE, Xu ZH, Cheng SY, Feng LX (1998) J Appl Polym Sci 68:969CrossRefGoogle Scholar
  25. 25.
    Kim JH, Chainey M, El-Aasser MS, Vanderhoff JW (1989) J Polym Sci Polym Chem 27:3187CrossRefGoogle Scholar
  26. 26.
    Kim JH, Chainey M, El-Aasser MS, Vanderhoff JW (1992) J Polym Sci Polym Chem 30:171CrossRefGoogle Scholar
  27. 27.
    Frick JG, Kottes BH, Reid JD (1959) Text Res J 29:314CrossRefGoogle Scholar
  28. 28.
    American Society for Testing and Materials (1969) Book of ASTM standards. American Society for Testing and Materials, Philadelphia, p 1716Google Scholar
  29. 29.
    American Society for Testing and Materials (1969) Book of ASTM standards. American Society for Testing and Materials, Philadelphia, p 539Google Scholar
  30. 30.
    Andersson M, Hietala S, Tenhu H, Maunu SL (2006) Colloid Polym Sci 284:1255CrossRefGoogle Scholar
  31. 31.
    Hearle JWS (1963) J Appl Polym Sci 7:1207CrossRefGoogle Scholar
  32. 32.
    Hearle JWS (1985) Cell Chem Appl 480Google Scholar
  33. 33.
    Hearle JWS, Sparrow JT (1971) Text Res J 41:736CrossRefGoogle Scholar
  34. 34.
    Hearle JWS, Wilkins AH (2006) J Text Inst 97:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of ChemistryThe Hong Kong University of Science and TechnologyHong KongChina
  2. 2.Department of Chemical EngineeringThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations