Skip to main content
Log in

Relationship between effective ionic radii, structure and electro-mechanical properties of zirconia stabilized with rare earth oxides M2O3 (M = Yb, Y, Sm)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zirconia stabilized with various concentrations of rare earth oxides of Yb, Sm and Y with different effective ionic radii ratio between the dopant and host cations was studied. In particular, structure, phase composition, compositional range for existence of cubic solid solutions and their phase transformations, stabilization degree of high-temperature phases and the crystal chemistry and type of solid solutions were investigated. These findings were related to the measured material characteristics, namely the electrical conductivity, microhardness and effective elastic modulus, to elucidate various effects important for practical applications, such as an increase of electrical conductivity due to the pyrochlore phase occurrence or an increase of microhardness arising from the effect of dynamic strain ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yamamura H, Nishino H, Kakimura K, Nomura K (2003) Solid State Ionics 158:359

    Article  CAS  Google Scholar 

  2. Taylor MA, Argirusis Chr, Kilo M, Borchardt G, Luther K-D, Assmus W (2004) Solid State Ionics 173:51

    Article  CAS  Google Scholar 

  3. Kimpton J, Randle TH, Drennan J (2002) Solid State Ionics 149:89

    Article  CAS  Google Scholar 

  4. Sameshima S, Ono H, Higashi K, Sonoda K, Hirata Y, Ikuma Y (2000) J Ceram Soc Jpn 108:1060 and references herein

  5. Strickler DW, Carlsson WG (1965) J Am Ceram Soc 48:286

    Article  CAS  Google Scholar 

  6. Stattford RJ, Rothman SJ, Routbort JL (1989) Solid State Ionics 37:67

    Article  Google Scholar 

  7. Gerhardt-Anderson R, Nowick AS (1981) Solid State Ionics 5:547

    Article  CAS  Google Scholar 

  8. Kim DJ (1989) J Am Ceram Soc 72:1415

    Article  CAS  Google Scholar 

  9. Badwal SPS, Ciacchi FT (2000) Ionics 6:1

    Article  CAS  Google Scholar 

  10. Osiko VV, Lomonova EE, Borik MA (1987) Ann Rev Mater Sci 17:101

    Article  CAS  Google Scholar 

  11. Hartmanová M, Kubel F, Buršíková V, Navrátil V, Navrátil K, Lomonova EE, Holgado JP, Kundracik F (2008) J Phys Chem Solids 69:805

    Article  Google Scholar 

  12. Hartmanová M, Schneider J, Navrátil V, Kundracik F, Schulz H, Lomonova EE (2000) Solid State Ionics 136–137:107

    Article  Google Scholar 

  13. Hartmanová M, Kubel F, Buršiková V, Jergel M, Navrátil V, Lomonova EE, Navrátil K, Kundracik F, Kostič I (2007) Russ J Electrochem 43:381

    Article  Google Scholar 

  14. Perez-y-Jorba M (1962) Ann Chim (Paris) 7:479

    Google Scholar 

  15. Collonques R (1963) Ann Chim (Paris) 8:395

    Google Scholar 

  16. Ray SP, Stubican VS (1977) Mater Res Bull 12:549

    Article  CAS  Google Scholar 

  17. Stubican VS, Hink RC, Ray SP (1978) J Am Ceram Soc 61:18

    Article  Google Scholar 

  18. Kuzminov YuS, Lomonova EE, Osiko VV (2004) In: Refractory materials synthetized in cold container. Publishing House NAUKA, Moscow, p 369

  19. Aleksandrov VI, Batyugov S Kh, Vishnyakova MA, Voronko Yu K, Kalabukhova VF, Lomonova EE, Osiko VV (1987) Neorg Materiallyi 23:349 (in Russian)

    Google Scholar 

  20. Roemer H, Luther K-D, Assmus W (1993) J Cryst Growth 130:233

    Article  CAS  Google Scholar 

  21. Roemer H, Luther K-D, Assmus W (1994) J Cryst Growth 141:159

    Article  CAS  Google Scholar 

  22. Roemer H, Luther K-D, Assmus W (1994) Z f Kristallogr 209:314

    Google Scholar 

  23. Alisin VV, Borik MA, Lomonova EE, Melshanov AF, Moskvitin GV, Osiko VV, Panov VA, Pavlov VG, Vishnyakova MA (2005) Mater Sci Eng C 25:577

    Article  Google Scholar 

  24. Glushkova VB, Hanic F, Sazonova LV (1978) Ceramurgia Int 4:176

    Article  CAS  Google Scholar 

  25. Hanic F, Hartmanová M, Krcho S (1988) Solid State Ionics 31:167

    Article  CAS  Google Scholar 

  26. Hartmanová M, Hanic F, Putyera K, Tunega D, Glushkova VB (1993) Mater Chem Phys 34:175

    Article  Google Scholar 

  27. Shannon RD (1976) Acta Crystallogr A 32:751

    Article  Google Scholar 

  28. Van Dijk MP, De Vries KJ, Burggraaf AJ (1983) Solid State Ionics 9&10:913

    Google Scholar 

  29. Hong SJ, Virkar AV (1995) J Am Ceram Soc 78:433

    Article  CAS  Google Scholar 

  30. Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1995) Solid State Ionics 79:137

    Article  CAS  Google Scholar 

  31. Pruneda JM, Artacho E (2005) Phys Rev B 72:085107

    Article  Google Scholar 

  32. Mandal BP, Garg N, Sharma SM, Tyagi AK (2006) J Solid State Chem 179:1990

    Article  CAS  Google Scholar 

  33. Mandal BP, Banerji A, Sathe V, Deb SK, Tyagi AK (2007) J Solid State Chem 180:2643

    Article  CAS  Google Scholar 

  34. Mandal BP, Deshpande SK, Tyagi AK (2008) J Mater Res 23:911

    Article  CAS  Google Scholar 

  35. Garg N, Pandey KK, Murli Ch, Shanavas KV, Mandal BP, Tyagi AK, Sharma SM (2008) Phys Rev B 77:214105

    Article  Google Scholar 

  36. Bevan DJ, Summerville E (1979) In: Gschneider KA Jr, Erying L (eds) Handbook on the physics and chemistry of rare-earths, vol 3. North-Holland, Amsterdam, p 496

    Google Scholar 

  37. Kharton VV, Marques FMB, Atkinson A (2004) Solid State Ionics 174:135

    Article  CAS  Google Scholar 

  38. Tuller HL, Moon PK (1988) Mater Sci Eng B 1:171

    Article  Google Scholar 

  39. Minervini L, Grimes RW, Sickafus KE (2000) J Am Ceram Soc 83:1873

    Article  CAS  Google Scholar 

  40. Van Bueren HG (1960) In: Imperfections in crystals. North-Holland Publishing Company, Amsterdam, p 208

  41. Caillard D, Martin JL (2003) In: Thermally activated mechanisms in crystal plasticity. Pergamon, Elsevier, Oxford, p 65

    Chapter  Google Scholar 

  42. Haasen P (1968) Trans Jpn Inst Metals 8(Suppl):40

    Google Scholar 

  43. Fleischer RL (1964) In: Strengthening of metals. Einhold Publ., New York

  44. Tabor D (2000) In: The hardness of metals. Clarendon Press, Oxford

  45. Wang Y, Duncan K, Wachsman ED, Ebrahimi F (2007) Solid State Ionics 178:53

    Article  CAS  Google Scholar 

  46. Duncan K, Wang Y, Bishop S, Ebrahimi F, Wachsman ED (2006) J Am Ceram Soc 89:3162

    Article  CAS  Google Scholar 

  47. Yamamoto O (2000) Electrochim Acta 45:2423

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the research grants No. 2/7119/27 and 2/0047/08 of the Slovak Grant Agency (VEGA), No. 106/05/0274 of the Grant Agency of Czech Republic (GACR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hartmanová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmanová, M., Lomonova, E.E., Kubel, F. et al. Relationship between effective ionic radii, structure and electro-mechanical properties of zirconia stabilized with rare earth oxides M2O3 (M = Yb, Y, Sm). J Mater Sci 44, 234–243 (2009). https://doi.org/10.1007/s10853-008-3085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3085-0

Keywords

Navigation