Skip to main content
Log in

Pt effects in γ-Ni(Al)/α-Al2O3 adhesion

  • Interface Science in Thermal Barrier Coatings
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present a systematic first-principles density-functional theory (DFT) study of the effects of Pt on the adhesion of the γ-Ni(Al)/α-Al2O3 interface, in a close comparison with those of Hf and S. Both the thermodynamically preferred Al-rich and the stoichiometric interfaces are considered. S is found to segregate to and substantially weaken both interfaces. Hf can pin S in bulk γ-Ni even at temperatures as high as 1,600 K, effectively inhibiting S segregation, while Pt cannot, due to phonon effects. For the stronger, Al-rich interface, both Hf and Pt have larger heats of segregation than S, inhibiting S segregation through preferential segregation. For the weaker, stoichiometric interface, Hf can significantly strengthen its adhesion to be as large as that of the Al-rich interface, and also inhibit S segregation through preferential segregation. Pt, as a contrast, can neither inhibit S segregation nor directly enhance the interface bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Prog Mater Sci 46:505

    Article  Google Scholar 

  2. Mumm DR, Evans AG (2000) Acta Mater 48:1815

    Article  CAS  Google Scholar 

  3. Evans AG, Clarke DR, Levi CG (2008) J Euro Ceram Soc 28:1405

    Article  CAS  Google Scholar 

  4. Funkenbusch AW, Smeggil JG, Bornstein NS (1985) Metall Trans A 16:1164

    Article  Google Scholar 

  5. Smeggil JG, Funkenbusch AW, Bornstein NS (1986) Metall Trans A 17:923

    Article  Google Scholar 

  6. Smialek JL, Jayne DT, Schaeffer JC, Murphy WH (1994) Thin Solid Films 235:285

    Article  Google Scholar 

  7. Smialek JL (2000) JOM 52:22

    Article  CAS  Google Scholar 

  8. Hou PY (2000) J Mater Sci Lett 19:577

    Article  CAS  Google Scholar 

  9. Smialek JL (1987) Metall Trans Commun 18A:164

    Article  CAS  Google Scholar 

  10. Khanna AS, Wasserfuhr C, Quadakkers WJ, Nickel H (1989) Mater Sci Eng A 120:185

    Article  Google Scholar 

  11. Meier GH, Pettit FS, Smialek JL (1995) Mater Corros 46:232

    Article  CAS  Google Scholar 

  12. Hou PY (1999) Oxid Met 52:337

    Article  CAS  Google Scholar 

  13. Haynes JA, Pint BA, More KL, Zhang Y, Wright IG (2002) Oxid Met 58:513

    Article  CAS  Google Scholar 

  14. Gleeson B (2006) J Propul Power 22:375

    Article  CAS  Google Scholar 

  15. Haynes JA, Zhang Y, Lee WY, Pint BA, Wright IG, Cooley KM (1999) Elevated Temp Coat Sci Technol III 3:185

  16. Zhang Y, Lee WY, Haynes JA, Wright IG, Pint BA, Cooley KM, Liaw PK (1999) Metall Mater Trans 30A:2679

    Article  CAS  Google Scholar 

  17. Cadoret Y, Bacos M-P, Josso P, Maurice V, Marcus P, Zanna S (2004) Mater Sci Forum 461–464:247

    Article  Google Scholar 

  18. Bouchet R, Mevrel R (2003) Calphad 27:295

    Article  CAS  Google Scholar 

  19. Cadoret Y, Monceau D, Bacos M-P, Josso P, Maurice V, Marcus P (2005) Oxid Met 64:185

    Article  CAS  Google Scholar 

  20. Meier GH, Pettit FS (1989) Surf Coat Technol 39:1

    Article  Google Scholar 

  21. Niu Y, Wu WT, Boone DH, Smith JS, Zhang JQ, Zhen CL (1993) J Phys 3:511

    CAS  Google Scholar 

  22. Angenete J, Stiller K, Langer V (2003) Oxid Met 60:47

    Article  CAS  Google Scholar 

  23. Tawancy HM, Sridhar N, Abbas NM, Rickerby D (1995) Scripta Mater 33:1431

    Article  CAS  Google Scholar 

  24. Das DK, Roy M, Singh V, Joshi SV (1999) Mater Sci Technol 15:1199

    Article  CAS  Google Scholar 

  25. Fountain JG, Golightly FA, Stott FH, Wood GC (1976) Oxid Met 10:341

    Article  CAS  Google Scholar 

  26. Zhang W, Smith JR, Evans AG (2002) Acta Mater 50:3803

    Article  CAS  Google Scholar 

  27. Saiz E, Cannon RM, Tomsia AP (1999) Acta Mater 47:4209

    Article  CAS  Google Scholar 

  28. Wang X-G, Smith JR, Evans AG (2006) Phys Rev B 74:081403

    Article  Google Scholar 

  29. Jiang Y, Smith JR, Evans AG (2006) Phys Rev B 74:224110

    Article  Google Scholar 

  30. Jiang Y, Smith JR, Evans AG (2008) Appl Phys Lett 92:141918

    Article  Google Scholar 

  31. Zhang W, Smith JR, Evans AG (2003) Phys Rev B 67:245414

    Article  Google Scholar 

  32. Smith JR, Jiang Y, Evans AG (2007) Int J Mater Res (Z Metallkd) 98:1214

    Article  CAS  Google Scholar 

  33. Dehm G, Rühle M, Ding G, Raj R (1995) Philos Mag B 71:1111

    Article  CAS  Google Scholar 

  34. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  35. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  36. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  CAS  Google Scholar 

  37. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  CAS  Google Scholar 

  38. Smith JR, Zhang W (2000) Acta Mater 48:4395

    Article  CAS  Google Scholar 

  39. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  40. Gutekunst G, Mayer J, Rühle M (1994) Scripta Metall Mater 31:1097

    Article  CAS  Google Scholar 

  41. Hou P (2008) Annu Rev Mater Res 38:275

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for Air Force Office of Scientific Research (AFOSR) support from Grant No.FA9550-05-C-0039 and many helpful discussions with X.-G. Wang and W. Zhang. We gratefully acknowledge the HRTEM micrograph of Fig. 2 sent to us by Rühle M. (See [40]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Smith, J.R. Pt effects in γ-Ni(Al)/α-Al2O3 adhesion. J Mater Sci 44, 1734–1740 (2009). https://doi.org/10.1007/s10853-008-3084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3084-1

Keywords

Navigation