Skip to main content
Log in

In situ TEM study of Au–Cu alloy nanoparticle migration and coalescence

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The diffusion and coalescence of Au–Cu alloy nanoparticles was studied at high magnification using in situ transmission electron microscopy. The particles prepared by physical vapor deposition onto amorphous-C support films had an average composition of Cu–43 at% Au and diameters of 15–50 nm. In the case analyzed, the larger of two nanoparticles remained stationary throughout the coalescence process while a smaller nanoparticle moved toward the larger particle at a temperature of ~573 K. The surface of the small nanoparticle was observed to fluctuate while approaching the larger particle, demonstrating that collective atom process occurs along the particle periphery. The particle also decreased in size during the process, indicating that it was losing mass as well as migrating. Direct evidence of a diffusional flux between particles was observed before the coalescence process. The small nanoparticle coalesced into the large one at a highly accelerated rate compared to its prior migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Datye AK (2003) J Catal 216:144

    Article  CAS  Google Scholar 

  2. Lifshitz IM, Slyozov VV (1961) Phys Chem Solids 19:35

    Article  Google Scholar 

  3. Voorhees PW (1985) J Stat Phys 38:231

    Article  Google Scholar 

  4. Wynblatt P, Gjostein NA (1976) Acta Mater 24:1165

    Article  CAS  Google Scholar 

  5. Zinke-Allmang M, Feldman LC, Grabow MH (1992) Surf Sci Rep 16:377

    Article  CAS  Google Scholar 

  6. Morgenstern K, Rosenfeld G, Comsa G (1996) Phys Rev Lett 761:2113

    Article  Google Scholar 

  7. Wen J-M, Chang S-L, Burnett JW et al (1994) Phys Rev Lett 73:2591

    Article  CAS  Google Scholar 

  8. Morgenstern K, Rosenfeld G, Poelsema B et al (1995) Phys Rev Lett 74:2058

    Article  CAS  Google Scholar 

  9. Reiss H (1968) J Appl Phys 39:5045

    Article  Google Scholar 

  10. Bardotti L, Jensen P, Hoareau A et al (1995) Phys Rev Lett 74:4694

    Article  CAS  Google Scholar 

  11. Ajayan PM, Marks LD (1988) Phys Rev Lett 60:585

    Article  CAS  Google Scholar 

  12. Smith DJ, Petfordlong AK, Wallenberg LR et al (1986) Science 233:872

    Article  CAS  Google Scholar 

  13. Jensen P, Clement A, Lewis LJ (2004) Comput Mater Sci 30:137

    Article  Google Scholar 

  14. Yang W-C, Zeman M, Ade H et al (2003) Phys Rev Lett 90:136102

    Article  CAS  Google Scholar 

  15. Sholl DS, Skodje RT (1996) Physica A 231:631

    Article  CAS  Google Scholar 

  16. Zhu H, Averback RS (1996) Philos Mag Lett 73:27

    Article  CAS  Google Scholar 

  17. Sinclair R, Itoh T, Chin R (2002) Microsc Microanal 8:288

    Article  CAS  Google Scholar 

  18. Thune E, Carpene E, Sauthoff K, Seibt M, Reinke P (2005) J Appl Phys 98:034304

    Article  Google Scholar 

  19. Chatterjee K, Howe JM, Johnson WC et al (2004) Acta Mater 52:2923

    Article  CAS  Google Scholar 

  20. Lee JG, Mori H (2007) Solid State Phenom 127:135

    Article  CAS  Google Scholar 

  21. Wallenberg R, Smith DJ, Bovin JO (1985) Ultramicroscopy 17(2):182

    Article  Google Scholar 

  22. Jensen P (1999) Rev Mod Phys 71:1695

    Article  CAS  Google Scholar 

  23. Wanner M, Werner R, Gerthsen D (2006) Surf Sci 600:632

    Article  CAS  Google Scholar 

  24. Hwang HJ, Kwon O, Kang JW (2004) Solid State Commun 129:687

    Article  CAS  Google Scholar 

  25. Lewis LJ, Jensen P, Combe N et al (2000) Phys Rev B 61:16084

    Article  CAS  Google Scholar 

  26. Foiles SM, Baskes MI, Daw MS (1986) Phys Rev B 33:7983

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Science Foundation under Grant DMR-0554792.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Raj S. Gautam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautam, A.R.S., Howe, J.M. In situ TEM study of Au–Cu alloy nanoparticle migration and coalescence. J Mater Sci 44, 601–607 (2009). https://doi.org/10.1007/s10853-008-3080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3080-5

Keywords

Navigation