Skip to main content
Log in

Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

By scanning electron microscopy and microanalysis of fly ash-based and mixed fly ash-slag inorganic polymer cement (i.e., “fly ash geopolymer”) binders, a more detailed understanding of the gel structure and its formation mechanism have been developed. The binder is predominantly an aluminosilicate gel charge balanced by alkali metal cations, although it appears that calcium supplied by slag particles becomes relatively well dispersed throughout the gel. The gel itself is comprised of colloidal-sized, globular units closely bonded together at their surfaces. The microstructure of the binder resulting from hydroxide activation of fly ash is much less uniform than that which forms in a corresponding silicate-activated system; this can be rationalized in terms of a newly developed explanation for the differences in reaction mechanisms between these two systems. In hydroxide activation, the newly formed gel phase nucleates and grows outwards from the ash particle surfaces, whereas the high silica concentration in a silicate-activated system enables a more homogeneous gelation process to take place throughout the inter-particle volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lloyd RR, Provis JL, van Deventer JSJ (2009) J Mater Sci, in press (Part 1 of this series). doi:https://doi.org/10.1007/s10853-008-3077-0

    Article  CAS  Google Scholar 

  2. Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62:2318

    Article  CAS  Google Scholar 

  3. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) J Mater Sci 42:2917. doi:https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  4. Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) Cem Concr Res 37:1590

    Article  CAS  Google Scholar 

  5. Steveson M, Sagoe-Crentsil K (2005) J Mater Sci 40:4247. doi:https://doi.org/10.1007/s10853-005-2794-x

    Article  CAS  Google Scholar 

  6. Sindhunata, van Deventer JSJ, Lukey GC, Xu H (2006) Ind Eng Chem Res 45:3559

    Article  CAS  Google Scholar 

  7. Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2007) Langmuir 23:8170

    Article  CAS  Google Scholar 

  8. Lloyd RR (2008) Ph.D. thesis, University of Melbourne, Australia

  9. Richardson IG, Groves GW (1992) J Mater Sci 27:6204. doi:https://doi.org/10.1007/BF01133772

    Article  CAS  Google Scholar 

  10. Richardson IG (1999) Cem Concr Res 29:1131

    Article  CAS  Google Scholar 

  11. Duxson P, Lukey GC, Separovic F, van Deventer JSJ (2005) Ind Eng Chem Res 44:832

    Article  CAS  Google Scholar 

  12. Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62:2309

    Article  CAS  Google Scholar 

  13. Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2007) Langmuir 23:9076

    Article  CAS  Google Scholar 

  14. Bell JL, Sarin P, Provis JL, Haggerty RP, Driemeyer PE, Chupas PJ, van Deventer JSJ, Kriven WM (2008) Chem Mater 20:4768

    Article  CAS  Google Scholar 

  15. Provis JL, Duxson P, Lukey GC, van Deventer JSJ (2005) Chem Mater 17:2976

    Article  CAS  Google Scholar 

  16. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Colloids Surf A 269:47

    Article  CAS  Google Scholar 

  17. Fernández-Jiménez A, Palomo A, Criado M (2005) Cem Concr Res 35:1204

    Article  CAS  Google Scholar 

  18. Kerch HM, Gerhardt RA, Grazul JL (1990) J Am Ceram Soc 73:2228

    Article  CAS  Google Scholar 

  19. Fernández-Jiménez A, García-Lodeiro I, Palomo A (2007) J Mater Sci 42:3055. doi:https://doi.org/10.1007/s10853-006-0584-8

    Article  CAS  Google Scholar 

  20. Fernández-Jiménez A, Lachowski EE, Palomo A, Macphee DE (2004) Cem Concr Compos 26:1001

    Article  CAS  Google Scholar 

  21. Criado M, Fernández-Jiménez A, de la Torre AG, Aranda MAG, Palomo A (2007) Cem Concr Res 37:671

    Article  CAS  Google Scholar 

  22. Kinrade SD, Swaddle TW (1988) Inorg Chem 27:4253

    Article  CAS  Google Scholar 

  23. Ray NH, Plaisted RJ (1983) J Chem Soc Dalton Trans 475

  24. Phair JW, van Deventer JSJ (2002) Int J Miner Proc 66:121

    Article  CAS  Google Scholar 

  25. Provis JL, Duxson P, Lukey GC, Separovic F, Kriven WM, van Deventer JSJ (2005) Ind Eng Chem Res 44:8899

    Article  CAS  Google Scholar 

  26. Swaddle TW (2001) Coord Chem Rev 219–221:665

    Article  Google Scholar 

  27. North MR, Swaddle TW (2000) Inorg Chem 39:2661

    Article  CAS  Google Scholar 

  28. Knight CTG (1990) Zeolites 10:140

    Article  CAS  Google Scholar 

  29. Cundy CS, Cox PA (2005) Micropor Mesopor Mater 82:1

    Article  CAS  Google Scholar 

  30. Knight CTG, Wang J, Kinrade SD (2006) Phys Chem Chem Phys 8:3099

    Article  CAS  Google Scholar 

  31. Lee WKW, van Deventer JSJ (2003) Langmuir 19:8726

    Article  CAS  Google Scholar 

  32. Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2008) Colloids Surf A 318:97

    Article  CAS  Google Scholar 

  33. Lee WKW, van Deventer JSJ (2002) Colloids Surf A 211:49

    Article  CAS  Google Scholar 

  34. Provis JL, Lukey GC, Van Deventer JSJ (2005) Chem Mater 17:3075

    Article  CAS  Google Scholar 

  35. Rowles M, O’Connor B (2003) J Mater Chem 13:1161

    Article  CAS  Google Scholar 

  36. Blackford MG, Hanna JV, Pike KJ, Vance ER, Perera DS (2007) J Am Ceram Soc 90:1193

    Article  CAS  Google Scholar 

  37. Yip CK, Lukey GC, van Deventer JSJ (2005) Cem Concr Res 35:1688

    Article  CAS  Google Scholar 

  38. Yip CK, van Deventer JSJ (2003) J Mater Sci 38:3851. doi:https://doi.org/10.1023/A:1025904905176

    Article  CAS  Google Scholar 

  39. Buchwald A, Hilbig H, Kaps C (2007) J Mater Sci 42:3024. doi:https://doi.org/10.1007/s10853-006-0525-6

    Article  CAS  Google Scholar 

  40. Shi C, Krivenko PV, Roy DM (2006) Alkali-activated cements and concretes. Taylor & Francis, Abingdon

    Book  Google Scholar 

  41. Allahverdi A, Škvára F (2001) Ceram-Silik 45:143

    CAS  Google Scholar 

  42. Brough AR, Atkinson A (2002) Cem Concr Res 32:865

    Article  CAS  Google Scholar 

  43. Cong X, Kirkpatrick RJ (1996) Adv Cem Based Mater 3:144

    Article  CAS  Google Scholar 

  44. Yong SL, Feng DW, Lukey GC, van Deventer JSJ (2007) Colloids Surf A 302:411

    Article  CAS  Google Scholar 

  45. Slavík R, Bednařík V, Vondruška M, Skoba O, Hanzlíček T (2005) Chem Listy 99:s471

    Google Scholar 

Download references

Acknowledgements

Partial financial support for this work was provided by the Australian Research Council (ARC), through Discovery Project grants awarded to J.S.J. van Deventer and through the Particulate Fluids Processing Centre, a Special Research Centre of the ARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Provis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, R.R., Provis, J.L. & van Deventer, J.S.J. Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder. J Mater Sci 44, 620–631 (2009). https://doi.org/10.1007/s10853-008-3078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3078-z

Keywords

Navigation