Skip to main content
Log in

Compositional dependence of structural and electrical properties in (1 − x)[PMN–PT(65/35)]–xPZ solid solutions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Perovskite types (1 − x)[PMN–PT(65/35)]–xPZ (with x = 0, 0.1, 0.3, 0.5, 0.7 and 0.9) piezoelectric ceramics were prepared by a modified columbite precursor method. The lattice parameters of the (1 − x)[PMN–PT(65/35)]–xPZ ceramics increase with the addition of larger Zr4+ ion compared to that of other B-site ions. The SEM photographs of all the samples with different PZ content exhibit homogeneous and dense microstructure. The PE loops indicate the PMN–PT–PZ ternary system has excellent ferroelectric properties. Both d33 and kp dependences in PZ content show similar variation. Introduction of a small amount of PZ content in the PMN–PT(65/35) ceramics enhanced the relaxor behavior, which was confirmed by studying frequency and temperature-dependent dielectric behavior. The increasing values of diffuseness parameter obtained from the fit of a modified Curie–Weiss law established the relaxor nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Service RE (1997) Science 275:1878

    Article  CAS  Google Scholar 

  2. Park S-E, Shrout TR (1997) J Appl Phys 82:1804

    Article  CAS  Google Scholar 

  3. Park S-E, Shrout TR (1997) Mater Res Innov 1:20

    Article  CAS  Google Scholar 

  4. Nomura S, Uchino K (1983) Ferroelectrics 50:197

    Article  Google Scholar 

  5. Masuzawa H, Ito Y, Nakaya C, Takeuchi H, Jyomura S (1989) Jpn J Appl Phys 28:101

    Article  CAS  Google Scholar 

  6. Yamashita Y, Hosono Y, Harada K, Yasuda N (2002) IEEE Trans Ultrason Ferroelectr Freq Control 49:184

    Article  Google Scholar 

  7. Ari-gur P, Benguigui L (1975) J Phys D Appl Phys 8:1856

    Article  CAS  Google Scholar 

  8. Hu XB, Wang JY, Ma LL, Xu XG, Luo HS, Zhu PP, Tian YL, Cryst J (2005) Growth 275:e1703

    Article  CAS  Google Scholar 

  9. Harmer MP, Chen J, Peng P, Chan HM, Smyth DM (1989) Ferroelectrics 97:263

    Article  CAS  Google Scholar 

  10. Chen J, Chan HM, Harmer MH (1989) J Am Ceram Soc 72:593

    Article  CAS  Google Scholar 

  11. Jiang XP, Fang JW, Zeng HR, Chu BJ, Li GR, Chen DR, Yin QR (2000) Mater Lett 44:219

    Article  CAS  Google Scholar 

  12. Xia ZG, Li Q (2007) J Phys D Appl Phys 40:7826

    Article  CAS  Google Scholar 

  13. Xia ZG, Wang L, Yan WX, Li Q, Zhang L (2007) Mater Res Bull 42:1715

    Article  CAS  Google Scholar 

  14. Swartz SL, Shrout TR (1982) Mater Res Bull 17:1245

    Article  CAS  Google Scholar 

  15. Wang L, Li Q, Xue LH, Zhang YL (2007) J Phys Chem Solids 68:2008

    Article  CAS  Google Scholar 

  16. Randall CA, Kim N, Kucera J, Cao W, Shrout TR (1998) J Am Ceram Soc 81:677

    Article  CAS  Google Scholar 

  17. Yoon KH, Lee HR (2001) J Appl Phys 89:3915

    Article  CAS  Google Scholar 

  18. Yimniruna R, Ananta S, Laoratanakul P (2005) J Eur Ceram 25:3235

    Article  Google Scholar 

  19. Uchino K, Nomura S (1982) Ferroelectr Lett 44:55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Li, Q., Xia, Z. et al. Compositional dependence of structural and electrical properties in (1 − x)[PMN–PT(65/35)]–xPZ solid solutions. J Mater Sci 44, 244–249 (2009). https://doi.org/10.1007/s10853-008-3075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3075-2

Keywords

Navigation