Skip to main content
Log in

Electron emission from La-Doped lead zirconate stannate titanate antiferroelectric ceramic under fast electric field pulses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High current density pulsed-electron emission is observed from a lead zirconate stannate titanate lanthanum-doped (PLZST) antiferroelectric ceramic disc on application of positive or negative triggering voltage pulses. Electron-emission pulse with a peak current density 1,400 A/cm2 and a full-width at half-maximum (FWHM) duration of 560 ns was recorded in the presence of a 3.5 kV dc extraction voltage. It is higher than the various earlier results obtained using lead zirconate titanate ferroelectric ceramic. Self emission of electrons with a current density of 1.3 A/cm2 and the FWHM duration of about 100 ns were also observed. Strong electrons emission was the co-effect of surface plasma and noncompensated charges at the surface of the antiferroelectric. Field-induced local phase transition in the vicinity close to triple junction results in primary electron emission from these areas. These primary emission electrons ignited surface plasma and then led to the strong emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Miller RC, Savage A (1960) J Appl Phys 31(4):662

    Article  CAS  Google Scholar 

  2. Gundel H, Reige H, Wilson EJN, Handerek J, Zioutas K (1989) Nucl Instrum Methods Phys Res A 280(1):1

    Article  Google Scholar 

  3. Krasik YE, Chirko K, Dunaevsky A, Gleizer JZ, Krokhmal A, Sayapin A, Felsteiner J (2003) IEEE Trans Plasma Sci 31(1):49

    Article  CAS  Google Scholar 

  4. Rosenman G, Shur D, Krasik YE, Dunaevsky A (2000) J Appl Phys 88:6109

    Article  CAS  Google Scholar 

  5. Rosenman G, Shur D, Garb K, Cohen R, Krasik YE (1997) J Appl Phys 82(2):772

    Article  CAS  Google Scholar 

  6. Riege H (1994) Nucl Instrum Methods Phys Res A 340:80

    Article  CAS  Google Scholar 

  7. Fleddermann CB, Nation JA (1997) IEEE Trans Plasma Sci 25:212

    Article  CAS  Google Scholar 

  8. Riege H, Boscolo I, Handerek J, Herleb U (1998) J Appl Phys 84:1602

    Article  CAS  Google Scholar 

  9. Peleg O, Chirko K, Gurovich V, Felsteiner J, Krasik YE, Bernshtam V (2005) J Appl Phys 97:113307

    Article  Google Scholar 

  10. Krasik YE, Chirko K, Gleizer JZ (2002) Eur Phys J D 19:89

    Article  CAS  Google Scholar 

  11. Auciello OH, McGuire GE (1995-9-26) US Patent 5453661

  12. Vollkommer F, Hitzschke L (2000-12-5) US Patent 6157145

  13. Kovaleski SD (2005) IEEE Trans Plasma Sci 33(2):876

    Article  CAS  Google Scholar 

  14. Kemp MA, Kovaleski SD (2006) J Appl Phys 100(11):1133061

    Article  Google Scholar 

  15. Sampayan S, Caporaso G, Holmes C, Lauer EJ, Prosnitz D, Trimble DO, Westenskow GA (1994) Nucl Instrum Methods Phys Res A 340:90

    Article  CAS  Google Scholar 

  16. Sampayan S, Caporaso G, Trimble D, Westenskow G (1995) IEEE Part Accel Conf 2:899

    Article  Google Scholar 

  17. Jiang B, Kirkman G, Reinhardt N (1995) Appl Phys Lett 66(10):1196

    Article  CAS  Google Scholar 

  18. Gundel H, Meineke A (1993) Ferroelectrics 146:29

    Article  CAS  Google Scholar 

  19. Gundel H, Riege H, Wilson EJN, Handerek J, Zioutas K (1989) Ferroelectrics 100:1

    Article  CAS  Google Scholar 

  20. Gundel H (1992) Integr Ferroelectr 2:207

    Article  CAS  Google Scholar 

  21. Dunaevsky A, Krasik YE, Felsteiner J (2000) J Appl Phys 87:3270

    Article  CAS  Google Scholar 

  22. Kofoid MJ (1960) AIEE Trans Part 3 79:991

    Google Scholar 

  23. Krasik Y, Dunaevsky A, Felsteiner J (1999) J Appl Phys 85:7946

    Article  CAS  Google Scholar 

  24. Yong TK, Ki HY (2000) Appl Phys Lett 76:3977

    Article  Google Scholar 

  25. Feng YJ, Xu Z, Wei YX, Yao X (2003) Acta Phys Sin 52(5):1256

    Google Scholar 

Download references

Acknowledgement

This study was supported by the State Key Development Program for Basic Research of China (Grant No. 2002CB613307) and by the National Basic Research Program of China (Grant No. 50472052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. X. Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, Z.X., Feng, Y.J., Xu, Z. et al. Electron emission from La-Doped lead zirconate stannate titanate antiferroelectric ceramic under fast electric field pulses. J Mater Sci 44, 556–562 (2009). https://doi.org/10.1007/s10853-008-3070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3070-7

Keywords

Navigation