Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering on AISI H13 steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

CrAlN coatings were deposited on silicon and AISI H13 steel substrates using a modified ion beam enhanced magnetron sputtering system. At the modified ion beam bombardment, the effects of bias voltage and Al/(Cr + Al) ratio on microstructure and mechanical properties of the coatings were studied. The X-ray diffraction data showed that all CrAlN coatings were crystallized in the cubic NaCl B1 structure, showing the (111), (200), and (220) preferential orientation. It is noted that the (111) diffraction peak intensity decreased and the peaks broadened as the bias voltage increased at the same ratio of Al/Cr targets power, which is attributed to the variation in the grain size and microstrain. The microstructure observation of the coatings by field emission scanning electron microscopy cross-section morphology shows that the columnar grain became more compact and dense with increasing substrate bias voltage and Al concentration. At a substrate bias voltage of −120 V and a Al/(Cr + Al) ratio of 40%, the coating had the highest hardness (33.8 GPa) and excellent adhesion to the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heim D, Holler F, Mitterer C (1999) Surf Coat Technol 116–119:530

    Article  Google Scholar 

  2. Chiba Y, Omura T, Ichimura H (1993) J Mater Res 8:1109

    Article  CAS  Google Scholar 

  3. Bin T, Xiaodong Z, Naisai H, Jiawen H (2000) Surf Coat Technol 131:391

    Article  Google Scholar 

  4. Mayrhofer PH, Willmann H, Mitterer C (2001) Surf Coat Technol 146–147:222

    Article  Google Scholar 

  5. Romero J, Gómez MA, Esteve J, Montalà F, Carreras L, Grifol M, Lousa A (2006) Thin Solid Films 515:113

    Article  CAS  Google Scholar 

  6. Lin J, Mishra B, Moore JJ, Sproul WD (2006) Surf Coat Technol 201:4329

    Article  CAS  Google Scholar 

  7. Scheerer H, Hoche H, Broszeit E, Schramm B, Abele E, Berger C (2005) Surf Coat Technol 200:203

    Article  CAS  Google Scholar 

  8. Brizuela M, Garcia-Luis A, Braceras I, Oñate JI, Sánchez-López JC, Martínez-Martínez D, López-Cartes C, Fernández A (2005) Surf Coat Technol 200:192

    Article  CAS  Google Scholar 

  9. Brecher C, Spachtholz G, Bobzin K, Lugscheider E, Knotek O, Maes M (2005) Surf Coat Technol 200:1738

    Article  CAS  Google Scholar 

  10. Spain E, Avelar-Batista JC, Letch M, Housden J, Lerga B (2005) Surf Coat Technol 200:1507

    Article  CAS  Google Scholar 

  11. Kawate M, Hashimoto AK, Suzuki T (2003) Surf Coat Technol 165:163

    Article  CAS  Google Scholar 

  12. Ding X-Z, Zeng XT (2005) Surf Coat Technol 200:1372

    Article  CAS  Google Scholar 

  13. Gannon PE, Tripp CT, Knospe AK, Ramana CV, Deibert M, Smith RJ, Gorokhovsky VI, Shutthanandan V, Gelles D (2004) Surf Coat Technol 189:55

    Article  Google Scholar 

  14. Lugscheider E, Bobzin K, Lackner K (2003) Surf Coat Technol 175:681

    Article  Google Scholar 

  15. Bobzin K, Lugscheider E, Maes M, Gold PW, Loos J, Kuhn M (2004) Surf Coat Technol 189:649

    Article  Google Scholar 

  16. Wuhrer R, Yeung WY (2004) Scr Mater 50(12):1461

    Article  CAS  Google Scholar 

  17. Uchida M, Nihira N, Mitsuo A, Toyoda K, Kubota K, Aizawa T (2004) Surf Coat Technol 177–178:627

    Article  Google Scholar 

  18. Reiter AE, Derflinger VH, Hanselmann B, Bachmann T, Sartory B (2005) Surf Coat Technol 200(7):2114

    Article  CAS  Google Scholar 

  19. Hirai M, Ueno Y, Suzuki T, Jiang WH, Grigoriu C, Yatsui K (2001) Jpn J Appl Phys 40:1056

    Article  CAS  Google Scholar 

  20. Moiseev T, Cameron DC (2005) Surf Coat Technol 200:5306

    Article  Google Scholar 

  21. Henderson PS, Kelly PJ, Arnell RD, Bäcker H, Bradley JW (2003) Surf Coat Technol 174–175:779

    Article  Google Scholar 

  22. Bradley JW, Bäcker H, Kelly PJ, Arnell RD (2001) Surf Coat Technol 142–144:337

    Article  Google Scholar 

  23. Bradley JW, Bäcker H, Aranda-Gonzalo Y, Kelly PJ, Amell RD (2002) Plasma Sources Sci Technol 11:165

    Article  CAS  Google Scholar 

  24. Mišina M, Bradley JW, Bäcker H, Gonzalov YA, Karkari SK, Forder D (2003) Vacuum 68:171

    Article  Google Scholar 

  25. Qi D, Rongping L, Shouzhong Z, Jian D (2005) J Vac Sci Technol (China) 25(1):69

    Google Scholar 

  26. Endrino JL, Palacín S, Aguirre MH, Gutiérrez A, Schäfers F (2007) Acta Mater 55:2129

    Article  CAS  Google Scholar 

  27. Karlsson L, Hultman L, Johansson MP, Sundgren J-E, Ljungcrantz H (2000) Surf Coat Technol 126:1

    Article  CAS  Google Scholar 

  28. Tian L, Zhu X, Tang B, Pan J, He J (2007) Mater Sci Eng A 483–484:751

    Google Scholar 

  29. Zhou M, Makino Y, Nose M, Nogi K (1999) Thin Solid Films 339:203

    Article  CAS  Google Scholar 

  30. Liu ZJ, Shum PW, Li KY, Shen YG (2003) Philos Mag Lett 83:627

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Scientific Foundation of China (No. 20471041 and 90306014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingshe Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, C., Wang, S., Tian, L. et al. Microstructure and mechanical properties of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering on AISI H13 steel. J Mater Sci 44, 300–305 (2009). https://doi.org/10.1007/s10853-008-3066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3066-3

Keywords

Navigation