Skip to main content
Log in

Structural, optical, and electrical properties of flash-evaporated copper indium diselenide thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Copper indium diselenide (CuInSe2) compound was synthesized by reacting its elemental components, i.e., copper, indium, and selenium, in stoichiometric proportions (i.e., 1:1:2 with 5% excess selenium) in an evacuated quartz ampoule. Structural and compositional characterization of synthesized pulverized material confirms the polycrystalline nature of tetragonal phase and stoichiometry. CuInSe2 thin films were deposited on soda lime glass substrates kept at different temperatures (300–573 K) using flash evaporation technique. The effect of substrate temperature on structural, morphological, optical, and electrical properties of CuInSe2 thin films were investigated using X-ray diffraction analysis (XRD), atomic force microscopy (AFM), optical measurements (transmission and reflection), and Hall effect characterization techniques. XRD analysis revealed that CuInSe2 thin films deposited above 473 K exhibit (112) preferred orientation of grains. Transmission and reflectance measurements analysis suggests that CuInSe2 thin films deposited at different substrate temperatures have high absorption coefficient (~104 cm−1) and optical energy band gap in the range 0.93–1.02 eV. Results of electrical characterization showed that CuInSe2 thin films deposited at different substrate temperatures have p-type conductivity and hole mobility value in the range 19–136 cm2/Vs. Variation of energy band gap and resistivity of CuInSe2 thin films deposited at 523 K with thickness was also studied. The temperature dependence of electrical conductivity measurements showed that CuInSe2 film deposited at 523 K has an activation energy of ~30 meV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) Prog Photovolt Res Appl 16(3):235

    Article  CAS  Google Scholar 

  2. Akl AAS, Ashour A, Ramadan AA, Abd El Hady K (2001) Vacuum 61:75

  3. Klenk M, Schenker O, Alberts V, Bucher E (2001) Thin Solid Films 387:47

    Article  CAS  Google Scholar 

  4. Joseph CM, Menon CS (2001) J Phys D Appl Phys 34:1143

    Article  CAS  Google Scholar 

  5. Martill I, Santamaria J, Gonzalez-Diaz G, Sanchez-Quesada F (1987) J Appl Phys 62:4163

    Article  Google Scholar 

  6. Abernathy CR, Bates CW, Anani AA, Haba B, Smestad G (1984) Appl Phys Lett 45:890

    Article  CAS  Google Scholar 

  7. Huang CJ, Meen TH, Lai MY, Chen WR (2004) Sol Energy Mater Sol Cells 82:553

    CAS  Google Scholar 

  8. Hodes G, Engelhard T, Cahen D, Kazmerski LL, Herington C R (1985) Thin Solid Films 128:93

    Article  CAS  Google Scholar 

  9. Ashour A (2006) J Mater Sci: Mater Electron 17:625

    CAS  Google Scholar 

  10. Merino JM, Leon M, Rueda F, Diaz R (2000) Thin Solid Films 361–362:22

    Article  Google Scholar 

  11. Barett CS (1953) Structure of Metals, Crystallographic methods, Principles and Data. McGraw-Hill, New York, p 156

  12. Noufi R, Axton R, Herrington C, Deb SK (1984) Appl Phys Lett 45(6):668

    Article  CAS  Google Scholar 

  13. Dhanam M, Balsundarprabhu R, Jayakumar S, Gopalkrishnan P, Kanan MD (2002) Phys Stat Sol (a) 191:149

    Article  CAS  Google Scholar 

  14. Demichelis F, Kaniadakis G, Tagliferro A, Tresso E (1987) J Appl Opt 26:1737

    Article  CAS  Google Scholar 

  15. Schmidt J, Roscher HH, Labusch R (1994) Thin Solid Films 251:116

    Article  CAS  Google Scholar 

  16. Yamaguchi T, Matsufusa J, Yoshida A (1992) Sol Energy Mater Sol Cells 27:25

    Article  CAS  Google Scholar 

  17. Castaneda SI, Rueda F (2000) Thin Solid Films 361:145

    Article  Google Scholar 

  18. Petritz RL (1956) Phys Rev 104(6):1508

    Article  CAS  Google Scholar 

  19. Wu F, Chiou BS (1993) Appl Surf Sci 68:497

    Article  CAS  Google Scholar 

  20. Moulson AJ (1990) Electroceramics. Wiley, New York, p 26

    Google Scholar 

  21. Aissaoui O, Mehdaoui S, Bechiri L, Benebdeslem M, Benslim N, Amara A, Mahdjoubi L, Nouet G (2007) J Phys D Appl Phys 40:5663

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N. M. Shah is grateful to University Grants Commission (UGC) (Western Region Office, Pune, India) for the award of teacher fellowship under “Faculty Improvement Program” in X plan. The authors also wish to thank UGC (New Delhi, India) for providing financial assistance through major research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Panchal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, N.M., Ray, J.R., Kheraj, V.A. et al. Structural, optical, and electrical properties of flash-evaporated copper indium diselenide thin films. J Mater Sci 44, 316–322 (2009). https://doi.org/10.1007/s10853-008-3046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3046-7

Keywords

Navigation