Skip to main content
Log in

Raphia hookeri gum as a potential eco-friendly inhibitor for mild steel in sulfuric acid

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Exudate gum from Raphia hookeri (RH) was tested as corrosion inhibitor for mild steel in H2SO4 using weight loss and hydrogen evolution techniques at 30–60 °C. Results obtained revealed that RH act as corrosion inhibitor for mild steel in sulfuric acid medium. The corrosion rates in all concentrations studied increased with rise in temperature. The inhibition efficiency was observed to increase with increase in RH concentration but decreased with rise in temperature, which is suggestive of physical adsorption mechanism. The inhibitive action of RH is discussed in view of the adsorption of its phytochemical components onto steel surface, which protects the metal surface and thus do not permit the corrosion process to take place. The adsorption of the exudate gum onto the steel surface was found to follow the Langmuir adsorption isotherm. The free energies for the adsorption process and the apparent activation energies, enthalpies and entropies of the dissolution process were determined. The fundamental thermodynamic functions were used to glean important information about the RH inhibitory behavior. The results were explained in terms of chemical thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. El-Etre AY (2007) J Colloid Interface Sci 314:578

    Article  CAS  Google Scholar 

  2. Loto CA, Mohammed AI (2000) Corros Prev Control 47(2):50

    CAS  Google Scholar 

  3. Gunasekeran G, Chauhan LR (2004) Electrochim Acta 49(25):4387

    Article  Google Scholar 

  4. Kliskic M, Radosevic J, Gudic S, Katalinic V (2000) J Appl Electrochem 30:823

    Article  CAS  Google Scholar 

  5. Avwiri GO, Igbo FO (2003) Mater Lett 57:3705

    Article  CAS  Google Scholar 

  6. Martinez S, Stern I (2001) J Appl Electrochem 33:1137

    Article  Google Scholar 

  7. Ashassi-Sorkhabi H, Seifzadeh D (2006) Int J Electrochem Sci 1:92

    CAS  Google Scholar 

  8. Umoren SA, Obot IB, Ebenso EE, Obi-Egbedi NO (2008) Port Electrochim Acta 26:199

    Article  CAS  Google Scholar 

  9. Umoren SA, Obot IB, Ebenso EE (2008) E-J Chem 5(2):355

    Article  CAS  Google Scholar 

  10. Umoren SA, Obot IB, Akpabio LE, Etuk SE (2008) Pigm Resin Technol 37(2):98

    Article  CAS  Google Scholar 

  11. Umoren SA, Obot IB, Ebenso EE, Okafor PC, Ogbobe O, Oguzie EE (2006) Anti-Corros Methods Mater 53(5):277

    Article  CAS  Google Scholar 

  12. Umoren SA, Ogbobe O, Ebenso EE (2006) Trans SAEST 41:74

    CAS  Google Scholar 

  13. Umoren SA, Ogbobe O, Ebenso EE, Ekpe UJ (2006) Pigm Resin Technol 35:284

    Article  CAS  Google Scholar 

  14. Umoren SA, Ogbobe O, Ebenso EE (2006) Bull Electrochem 22:155

    CAS  Google Scholar 

  15. Ekpe UJ, Ebenso EE, Antia BS (1999) West Afr J Biol Appl Chem 41:16

    Google Scholar 

  16. Gomma GK (1998) Mater Chem Phys 55:241

    Article  CAS  Google Scholar 

  17. Jones AD (1996) Principles and prevention of corrosion, 2nd edn. Printice Hall Inc., Upper Saddle River, NJ, p 31

    Google Scholar 

  18. Ebenso EE, Ibok UJ, Ekpe UJ, Umoren SA, Jackson E, Abiola OK, Oforka NC, Martinez S (2004) Trans SAEST 39:117

    CAS  Google Scholar 

  19. Onuchukwu AI (1988) Mater Chem Phys 20:323

    Article  CAS  Google Scholar 

  20. Oguzie EE (2005) Pigm Resin Technol 34(6):321

    Article  CAS  Google Scholar 

  21. Bouklah M, Hammouti B (2006) Port Electrochim Acta 24:457

    Article  CAS  Google Scholar 

  22. Okafor PC, Ekpe UJ, Ebenso EE, Umoren EM, Leizou KE (2005) Bull Electrochem 8:347

    Google Scholar 

  23. Umoren SA, Ebenso EE (2007) Mater Chem Phys 106(2–3):387

    Article  CAS  Google Scholar 

  24. Yurt A, Balaban A, Kandermir SU, Bereket G, Erk B (2004) Mater Chem Phys 85:420

    Article  CAS  Google Scholar 

  25. Radovici O (1965) Proceedings of the 2nd European symposium on corrosion inhibition, Ferrara, Italy, p 178

  26. Martinez S, Metikos-Hukovic M (2003) J Appl Electrochem 33:1137

    Article  CAS  Google Scholar 

  27. Popova A, Sokolova E, Raicheva S, Christov M (2003) Corros Sci 45:33

    Article  Google Scholar 

  28. Zucchi F, Trabanelli G, Brunoro G (1994) Corros Sci 36:1683

    Article  CAS  Google Scholar 

  29. Bochris JOM, Reddy AKN (1977) Modern electrochemistry, vol 2. Plenum Press, New York, p 1267

    Google Scholar 

  30. Tang LB, Mu GN, Liu GH (2003) Corros Sci 45:2251

    Article  CAS  Google Scholar 

  31. Bouklah M, Benchat N, Hammouti B, Aouniti A, Kertit S (2006) Mater Lett 60:1901

    Article  CAS  Google Scholar 

  32. Bentiss F, Traisnel M, Lagrenee M (2000) Corros Sci 42:127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Obot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umoren, S.A., Obot, I.B. & Obi-Egbedi, N.O. Raphia hookeri gum as a potential eco-friendly inhibitor for mild steel in sulfuric acid. J Mater Sci 44, 274–279 (2009). https://doi.org/10.1007/s10853-008-3045-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3045-8

Keywords

Navigation