Skip to main content
Log in

A facile template-free approach to metal oxide spheres with well-defined nanopore structures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanoporous Al2O3 with well-defined pore structure, crystallized framework and spherical morphology has been prepared by a facile template-free approach, which involves the preparation via homogeneous precipitation and subsequent decomposition of spherical basic aluminium sulphate particles. The particle size of the spheres can be tuned by controlling the holding time from the beginning of precipitation, and a proper decomposition temperature is important to get high surface area, high pore volume and well-defined pore structures. By the similar way, nanoporous ZrO2 and TiO2 spherical particles can also be prepared. These nanoporous oxides all have moderately high surface area (50–70 m2/g) and well-defined nanopores of around 4–12 nm with very narrow pore size distribution. The frameworks of these oxide spheres consist of many small nanocrystallites, between which the nanopores exist. Compared with the soft and hard template routes, this decomposition strategy of sulphates for nanoporous oxides has the advantages of simplicity and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shi JL, Hua ZL, Zhang LX (2004) J Mater Chem 5:795

    Article  Google Scholar 

  2. Chen HR, Shi JL, Li YS, Yan JN, Hua ZL, Chen HG, Yan DS (2003) Adv Mater 15:1078

    Article  CAS  Google Scholar 

  3. Yin DH, Qin LS, Liu HF (2005) J Mol Catal A Chem 240:40

    CAS  Google Scholar 

  4. Sun J, Gao L, Zhang QH (2003) J Am Ceram Soc 86:1677

    Article  CAS  Google Scholar 

  5. Bakardjieva S, Šubrt J, Štengl V, Dianez MJ, Sayagues MJ (2005) Appl Catal B Environ 58:193

    Article  CAS  Google Scholar 

  6. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  7. Yang P, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152

    Article  CAS  Google Scholar 

  8. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548

    Article  CAS  Google Scholar 

  9. Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Adv Mater 13:677

    Article  CAS  Google Scholar 

  10. Ying JY, Mehnert CP, Wong MS (1999) Angew Chem Int Ed 38:56

    Article  CAS  Google Scholar 

  11. Tian BZ, Liu XY, Yang HF, Xie SH, Yu CZ, Tu B, Zhao DY (2003) Adv Mater 15:1370

    Article  CAS  Google Scholar 

  12. Tian BZ, Liu XY, Tu B, Yu CZ, Fan J, Wang LM, Xie SH, Stucky GD, Zhao DY (2003) Nature Mater 2:159

    Article  CAS  Google Scholar 

  13. Shi JL, Gao JH (1995) J Mater Sci 30:793

    Article  CAS  Google Scholar 

  14. Shi JL, Gao JH, Lin ZX (1989) Solid State Ion 32–33:537

    Article  Google Scholar 

  15. Shi JL, Gao JH, Ruan ML (1992) Chin J Inorg Chem 7:161

    CAS  Google Scholar 

  16. Adachi-Pagano M, Forano C, Besse JP (2003) J Mater Chem 13:1988

    Article  CAS  Google Scholar 

  17. Ada K, Sarikaya Y, Alemdaroglu T, Onal M (2003) Ceram Int 29:513

    Article  CAS  Google Scholar 

  18. Ozawa M, Nishio Y (2004) J Alloy Compd 374:397

    Article  CAS  Google Scholar 

  19. Ookubo A, Ooi K, Tomita T (1989) J Mater Sci 24:3599

    Article  CAS  Google Scholar 

  20. Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 106:7634

    Article  CAS  Google Scholar 

  21. Seo DS, Kim H, Jung HC (2003) J Mater Res 18:571

    Article  CAS  Google Scholar 

  22. Tas AC, Majewski PJ, Aldinger F (2002) J Am Ceram Soc 85:1421

    Article  CAS  Google Scholar 

  23. Bakardjieva S, Šubrt J, Štengl V, Vecernikova E, Bezdicka P (2003) Solid State Phenom 90–91:7

    Article  Google Scholar 

  24. Šubrt J, Boháček J, Štengl V, Grygar T, Bezdička P (1999) Mater Res Bull 34:905

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Science Foundation of China (Grant No. 50702072, 20703055, 20633090), the Shanghai Rising Star Project (Grant No. 08QA14074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Yu, C., Gao, J. et al. A facile template-free approach to metal oxide spheres with well-defined nanopore structures. J Mater Sci 43, 7184–7191 (2008). https://doi.org/10.1007/s10853-008-3017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3017-z

Keywords

Navigation