Skip to main content
Log in

A theory for yield phenomenon of glassy polymers based on the strain non-uniformity under loading conditions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the yield phenomenon and its related features have been investigated under the concept of strain inhomogeneity, emerged inside the material during deformation processes. This strain non-uniformity in glassy polymers is either a direct consequence of the local microstructural density fluctuations existing in such materials or is the result of the manner by which the free volume is frozen in the glassy state. Assuming a simple strain density distribution function, the rate of plastic deformation can be extracted without any further assumption on a molecular conformational base or any other thermal activated process. The two model parameters required have a physical base related with the magnitude of the free volume and its fluctuation in glassy polymers. Appling this theory on the experimental results for three representative amorphous glassy polymers (PMMA, PS, and PC), all features of yield process, including strain softening effect, are easily described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bowden PB, Raha S (1974) Philos Mag 29:146. doi:https://doi.org/10.1080/14786437408213560

    Article  Google Scholar 

  2. Robertson RE (1966) J Chem Phys 44:3950. doi:https://doi.org/10.1063/1.1726558

    Article  Google Scholar 

  3. Argon AS (1973) Philos Mag 28:839. doi:https://doi.org/10.1080/14786437308220987

    Article  CAS  Google Scholar 

  4. G’Sell C, Jonas JJ (1981) J Mater Sci 14:583

    Article  Google Scholar 

  5. Boyce MC, Parks DM, Argon AS (1988) Mech Mater 7:15. doi:https://doi.org/10.1016/0167-6636(88)90003-8

    Article  Google Scholar 

  6. Hasan OA, Boyce MC (1993) Polymer (Guildf) 34:5085. doi:https://doi.org/10.1016/0032-3861(93)90252-6

    Article  CAS  Google Scholar 

  7. Hasan OA, Boyce MC (1995) Polym Eng Sci 35:331. doi:https://doi.org/10.1002/pen.760350407

    Article  CAS  Google Scholar 

  8. Hasan OA, Boyce MC, Li XS, Berko S (1993) J Polym Sci Phys 31:185. doi:https://doi.org/10.1002/polb.1993.090310207

    Article  CAS  Google Scholar 

  9. Eyring HJ (1936) J Chem Phys 4:283. doi:https://doi.org/10.1063/1.1749836

    Article  CAS  Google Scholar 

  10. Dlubek G, Bondarenko V, Pionteck J, Supej M, Wutzler A, Krause-Rehberg R (2003) Polymer (Guildf) 44:1921. doi:https://doi.org/10.1016/S0032-3861(03)00056-9

    Article  CAS  Google Scholar 

  11. Schmidt M, Maurer FHJ (2000) Polymer (Guildf) 41:8419. doi:https://doi.org/10.1016/S0032-3861(00)00181-6

    Article  CAS  Google Scholar 

  12. Kanaya T, Tsukushi T, Kaji K, Bartos J, Kristiak J (1999) Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60(2):1906. doi:https://doi.org/10.1103/PhysRevE.60.1906

    Article  CAS  Google Scholar 

  13. Higuchi H, Yu Z, Jamieson AM, Simha R, McGervey JD (1995) J Pol Sci B: Polym Phys 33:2295. doi:https://doi.org/10.1002/polb.1995.090331701

    Article  CAS  Google Scholar 

  14. Xiao-Yan Wang KM, Lee Y, Stone MT, Sanchez IC, Freeman BD (2004) Polymer (Guildf) 45:3907. doi:https://doi.org/10.1016/j.polymer.2004.01.080

    Article  Google Scholar 

  15. Rubin MB (1994) Int J Solids Struct 31(19):2615. doi:https://doi.org/10.1016/0020-7683(94)90222-4

    Article  Google Scholar 

  16. Rubin MB (1994) Int J Solids Struct 31(19):2635. doi:https://doi.org/10.1016/0020-7683(94)90223-2

    Article  Google Scholar 

  17. Spathis G, Kontou E (1998) Polymer (Guildf) 24:189

    Google Scholar 

  18. Spathis G, Kontou E (1999) J Appl Polym Sci 71:2007. doi:10.1002/(SICI)1097-4628(19990321)71:12<2007::AID-APP10>3.0.CO;2-W

    Article  CAS  Google Scholar 

  19. Wendorff JH, Fisher EW (1973) Kolloid Z Z Polym 251:876. doi:https://doi.org/10.1007/BF01498914

    Article  CAS  Google Scholar 

  20. Curro JJ, Roe RJ (1984) Polymer (Guildf) 25:1424. doi:https://doi.org/10.1016/0032-3861(84)90104-6

    Article  CAS  Google Scholar 

  21. Roe RJ, Curro JJ (1983) Macromolecules 16:428. doi:https://doi.org/10.1021/ma00237a018

    Article  CAS  Google Scholar 

  22. Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701. doi:https://doi.org/10.1021/ja01619a008

    Article  CAS  Google Scholar 

  23. Malhotra BD, Pethrick RA (1983) Eur Polym J 19:45. doi:https://doi.org/10.1016/0014-3057(83)90193-3

    Article  Google Scholar 

  24. Malhotra BD, Pethrick RA (1983) Polymer (Guildf) 24:165

    CAS  Google Scholar 

  25. Goyanes S, Rubiolo G, Salgueiro W, Somoza A (2005) Polymer (Guildf) 46:9081. doi:https://doi.org/10.1016/j.polymer.2005.07.020

    Article  CAS  Google Scholar 

  26. Lee EH (1966) Elastic–plastic deformation at finite strain. J Appl Mech 36:1

    Article  Google Scholar 

  27. Eckard C (1984) Phys Rev 73:373. doi:https://doi.org/10.1103/PhysRev.73.373

    Article  Google Scholar 

  28. Besseling JF (1968) In: Proceedings of IUTAM symposium on irreversible aspects of continuum mechanics, Vienna, Springer, pp 16–53

  29. Chau CC, Blackson J (1995) Polymer (Guildf) 36:2511. doi:https://doi.org/10.1016/0032-3861(95)91195-D

    Article  CAS  Google Scholar 

  30. Anglan H, El-Hadik GY, Faughnan P, Bryan C (1999) J Mater Sci 34:83. doi:https://doi.org/10.1023/A:1004465507788

    Article  Google Scholar 

  31. Matsuoka S (1992) Relaxation phenomena in polymers, 2nd edn. Hanser, Ch. 3

  32. Spitzing WA, Richmon O (1979) Polym Eng Sci 19:1129. doi:https://doi.org/10.1002/pen.760191602

    Article  Google Scholar 

  33. Wolfram SS (1993) Mathematica, a system for doing mathematics by computer, 2nd edn. Wolfram Research, New York

  34. Boyce MC, Arruda EM (1990) Polym Eng Sci 30(20):1288. doi:https://doi.org/10.1002/pen.760302005

    Article  CAS  Google Scholar 

  35. Hoy RS, Robbins MO (2008) Phys Rev E Stat Nonlin Soft Matter Phys 77:031801. doi:https://doi.org/10.1103/PhysRevE.77.031801

    Article  Google Scholar 

  36. Hoy RS, Robbins MO (2007) Phys Rev Lett 99:117801. doi:https://doi.org/10.1103/PhysRevLett.99.117801

    Article  Google Scholar 

  37. Hoy RS, Robbins MO (2006) J Pol Sci B: Polym Phys 44:3487. doi:https://doi.org/10.1002/polb.21012

    Article  CAS  Google Scholar 

  38. James HM, Guth E (1943) J Chem Phys 11:455. doi:https://doi.org/10.1063/1.1723785

    Article  CAS  Google Scholar 

  39. Oleynik EF (1990) In: Baer E, Moet S (eds) High performance polymer. Munchen, Ch., 4, p 80

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Spathis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spathis, G. A theory for yield phenomenon of glassy polymers based on the strain non-uniformity under loading conditions. J Mater Sci 43, 7192–7202 (2008). https://doi.org/10.1007/s10853-008-2989-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2989-z

Keywords

Navigation