Skip to main content
Log in

Self-assembly of polystyrene microspheres within spatially confined rectangular microgrooves

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A convective self-assembly of mono-sized polystyrene spheres with diameters ranging from 262 to 1000 nm was conducted on patterned silicon wafers with one-dimensional, periodic rectangular microgrooves of different widths (0.65–6 μm). The latex beads were driven into the spatially confined microgrooves by the capillary interactions and the confined wall during solvent evaporation, resulting in a range of packing structures. Processing variables including evaporation temperature, particle size (D), groove width (W), and groove height (H) were examined experimentally, and geometrical models were proposed to explain the various packing structures obtained. The degree of spatial freedom for the particles to rearrange themselves in the confined channels is found critical to the assembled particle-packing structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Park S, Qin D, Xia Y (1998) Adv Mater 10:1028. doi:10.1002/(SICI)1521-4095(199809)10:13<1028::AID-ADMA1028>3.0.CO;2P

    Article  CAS  Google Scholar 

  2. Holgado M, Garcia-Santamaria F, Blanco A, Ibisate M, Cintas A, Miguez H et al (1999) Langmuir 15:4701. doi:https://doi.org/10.1021/la990161k

    Article  CAS  Google Scholar 

  3. Vlasov YA, Bo X-Z, Sturm JC, Norris DJ (2001) Nature 414:289. doi:https://doi.org/10.1038/35104529

    Article  CAS  Google Scholar 

  4. Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1992) Langmuir 8:3183. doi:https://doi.org/10.1021/la00048a054

    Article  CAS  Google Scholar 

  5. Yin Y, Lu Y, Gates B, Xia Y (2001) J Am Chem Soc 123:8718. doi:https://doi.org/10.1021/ja011048v

    Article  CAS  Google Scholar 

  6. Hoogenboom JP, Rétif C, de Bres E, van de Boer M, van Langen-Suurling AK, Romijn J et al (2004) Nano Lett 4:205. doi:https://doi.org/10.1021/nl034867h

    Article  CAS  Google Scholar 

  7. Ozin GA, Yang SM (2001) Adv Funct Mater 11:95. doi:10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O

    Article  CAS  Google Scholar 

  8. Yang SM, Míguez H, Ozin GA (2002) Adv Funct Mater 12:425. doi:10.1002/1616-3028(20020618)12:6/7<425::AID-ADFM425>3.0.CO;2-U

    Article  CAS  Google Scholar 

  9. Ye Y-H, Badilescu S, Truong V-V, Rochon P, Natansohn A (2001) Appl Phys Lett 79:872. doi:https://doi.org/10.1063/1.1391234

    Article  CAS  Google Scholar 

  10. Joannopoulos JD, Villeneuve PR, Fan S (1997) Nature 386:143. doi:https://doi.org/10.1038/386143a0

    Article  CAS  Google Scholar 

  11. Krauss TF, De La Rue RM (1999) Prog Quantum Electron 23:51. doi:https://doi.org/10.1016/S0079-6727(99)00004-X

    Article  CAS  Google Scholar 

  12. Aoki K, Miyazaki HT, Hirayama H, Inoshita K, Baba T, Sakoda K et al (2003) Nat Mater 2:117. doi:https://doi.org/10.1038/nmat802

    Article  CAS  Google Scholar 

  13. Dimitrov AS, Nagayama K (1996) Langmuir 12:1303. doi:https://doi.org/10.1021/la9502251

    Article  CAS  Google Scholar 

  14. Lin KH, Crocker JC, Prasad V, Schofield A, Weitz DA, Lubensky TC et al (2000) Phys Rev Lett 85:1770. doi:https://doi.org/10.1103/PhysRevLett.85.1770

    Article  CAS  Google Scholar 

  15. Aizenberg J, Braun PV, Wiltzius P (2000) Phys Rev Lett 84:2997. doi:https://doi.org/10.1103/PhysRevLett.84.2997

    Article  CAS  Google Scholar 

  16. Ye YH, LeBlanc F, Haché A, Truong V-V (2001) Appl Phys Lett 78:52. doi:https://doi.org/10.1063/1.1337619

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the National Science Council (Taiwan, ROC) under contract 92-2216-E-005-021 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjea J. Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SK., Tang, TP. & Tseng, W.J. Self-assembly of polystyrene microspheres within spatially confined rectangular microgrooves. J Mater Sci 43, 6453–6458 (2008). https://doi.org/10.1007/s10853-008-2981-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2981-7

Keywords

Navigation