Skip to main content
Log in

Effect of an environmental stress cracking agent on the mechanism of fatigue and creep in polyethylene

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is of interest to determine whether the prediction of long-term creep failure from short-term fatigue experiments, as established for polyethylene in air, can be extended to environmental liquids. This article was undertaken to characterize the mechanism of creep crack growth in an environmental liquid at 50 °C and to determine whether the mechanism was conserved in fatigue as required for the fatigue-to-creep correlation. For this purpose, creep and fatigue tests at R-ratio (the ratio of minimum to maximum load in the fatigue cycle) of 1.0 (creep) and 0.1 were performed in air, water, and aqueous Igepal CO-630 (Igepal-630) solutions at various concentrations. It was found that fatigue and creep followed the same stepwise crack growth mechanism as in air in all the Igepal-630 concentrations studied. In air and water, fatigue substantially accelerated the crack growth kinetics compared to creep. A fatigue acceleration effect was also seen with the lower Igepal-630 concentrations. However, the acceleration effect lessened as the concentration increased to 0.05 vol.% due to the combined effects of the gradually decreasing creep lifetime and the gradually increasing fatigue lifetime. Above 0.05%, the lifetimes in creep and fatigue decreased in parallel with the fatigue lifetime only slightly lower than the creep lifetime. It appeared that Igepal-630 reduced the frictional resistance to chain slippage to the extent that any significant strain rate sensitivity was lost. Increasing the molecular weight had the equivalent effect of decreasing the Igepal-630 concentration. This was probably a kinetic effect related to the diffusion of the stress cracking liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lustiger A (1986) In: Brostow W, Corneliussen RD (eds) Failure of plastics. Hanser Publications, NY

  2. Williams JG, Marshall GP (1975) Pro R Soc Lond A 55:1975

    Google Scholar 

  3. Shanahan MER, Schultz J (1979) J Polym Sci Polym Phys 17:705

    Article  CAS  Google Scholar 

  4. Qian R, Lu X, Brown N (1993) Polymer 34:4727

    Article  CAS  Google Scholar 

  5. Hittmair P, Ullman R (1962) J Appl Polym Sci 6:1

    Article  CAS  Google Scholar 

  6. Ward AL, Lu X, Huang Y, Brown N (1991) Polymer 32:2172

    Article  CAS  Google Scholar 

  7. Ward AL, Lu X, Huang Y, Brown N (1990) Polym Eng Sci 30:1175

    Article  CAS  Google Scholar 

  8. Chan MKV, Williams JG (1983) Polymer 24:234

    Article  CAS  Google Scholar 

  9. Tonyali K, Rogers CE, Brown HR (1989) J Macromol Sci Phys B 28:235

    Article  Google Scholar 

  10. Lustiger A, Corneliussen RD (1987) J Mater Sci 22:2470. doi:https://doi.org/10.1007/BF01082132

    Article  CAS  Google Scholar 

  11. Brown H (1978) Polymer 19:1186

    Article  CAS  Google Scholar 

  12. Tonyali K, Rogers CE, Brown HR (1987) Polymer 28:1472

    Article  CAS  Google Scholar 

  13. Mai YW, Williams JG (1979) J Mater Sci 14:1933. doi:https://doi.org/10.1007/BF00551034

    Article  CAS  Google Scholar 

  14. Altstaedt V, Keiter S, Renner M, Schlarb A (2004) Macromol Symp 214:31

    Article  CAS  Google Scholar 

  15. Parsons M, Stepanov EV, Hiltner A, Baer E (1999) J Mater Sci 34:3315. doi:https://doi.org/10.1023/A:1004616728535

    Article  CAS  Google Scholar 

  16. Parsons M, Stepanov EV, Hiltner A, Baer E (2000) J Mater Sci 35:1857. doi:https://doi.org/10.1023/A:1004741713514

    Article  CAS  Google Scholar 

  17. Parsons M, Stepanov EV, Hiltner A, Baer E (2000) J Mater Sci 35:2659. doi: https://doi.org/10.1023/A:1004789522642

    Article  CAS  Google Scholar 

  18. Ayyer R, Hiltner A, Baer E (2007) J Mater Sci 42:7004. doi: https://doi.org/10.1007/s10853-006-1108-2

    Article  CAS  Google Scholar 

  19. Shah A, Stepanov EV, Hiltner A, Baer E, Klein M (1997) Int J Fract 84:159

    Article  CAS  Google Scholar 

  20. Parsons M, Stepanov EV, Hiltner A, Baer E (2001) J Mater Sci 36:5747. doi: https://doi.org/10.1023/A:1012935517866

    Article  CAS  Google Scholar 

  21. Shah A, Stepanov EV, Capaccio G, Hiltner A, Baer E (1998) J Polym Sci B Polym Phys 36:2355

    Article  CAS  Google Scholar 

  22. Brown N, Ward IM (1983) J Mater Sci 18:1405. doi:https://doi.org/10.1007/BF01111960

    Article  CAS  Google Scholar 

  23. Berger LL, Kramer EJ (1987) Macromolecules 20:1980

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hiltner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayyer, R., Hiltner, A. & Baer, E. Effect of an environmental stress cracking agent on the mechanism of fatigue and creep in polyethylene. J Mater Sci 43, 6238–6253 (2008). https://doi.org/10.1007/s10853-008-2926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2926-1

Keywords

Navigation