Skip to main content
Log in

Analytical modeling of residual stresses in multilayered superconductor systems

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Residual stresses-induced damages in multilayered films grown on technical substrates present a reliability issue for the fabrication and applications of multilayered superconductor systems. Using closed-form solutions for residual stresses in multilayered systems, specific results were calculated for residual stresses induced by the lattice and the thermal mismatches in the system of YBCO/CeO2/YSZ/Y2O3 films on a Ni-5 W substrate. It was concluded that lattice mismatch-induced residual stresses must be relaxed by forming interfacial defects. Studies of residual thermal stresses showed the following. When the thickness of a film is negligible compared to the substrate, the changes of its properties modify the residual stresses in this film layer but have negligible effects on the residual stresses in other layers in the system. On the other hand, when the thickness of certain film layer is not negligible compared to the substrate, residual stresses in each layer can be controlled by adjusting the properties and thickness of this film layer. Finally, the effects of buffer layers on thermal stresses in YBa2Cu3O7–x (YBCO) were addressed by using YBCO/LaMnO3/homo-epi MgO/IBAD MgO/Y2O3/Al2O3 films on Hastelloy substrate as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Paranthaman M, Izumi T (2004) MRS Bull 29:533

    Article  CAS  Google Scholar 

  2. Paranthaman M, Sathyamurthy S, Heatherly L, Martin PM, Goyal A, Kodenkandath T et al (2006) Physica C 445–448:529. doi:https://doi.org/10.1016/j.physc.2006.06.006

    Article  CAS  Google Scholar 

  3. Goyal A, Paranthaman M, Schoop U (2004) MRS Bull 29:552

    Article  CAS  Google Scholar 

  4. Stoney GG (1909) Proc R Soc Lond 82:172. doi:https://doi.org/10.1098/rspa.1909.0021

    CAS  Google Scholar 

  5. Timoshenko S (1925) J Opt Soc Am 11:233

    Article  CAS  Google Scholar 

  6. Saul RH (1969) J Appl Phys 40:3273. doi:https://doi.org/10.1063/1.1658174

    Article  CAS  Google Scholar 

  7. Olsen GH, Ettenberg M (1977) J Appl Phys 48:2543. doi:https://doi.org/10.1063/1.323970

    Article  CAS  Google Scholar 

  8. Feng ZC, Liu HD (1983) J Appl Phys 54:83. doi:https://doi.org/10.1063/1.331690

    Article  CAS  Google Scholar 

  9. Iancu OT, Munz D, Eigenman B, Scholtes B, Macherauch E (1990) J Am Ceram Soc 73:1144. doi:https://doi.org/10.1111/j.1151-2916.1990.tb05170.x

    Article  CAS  Google Scholar 

  10. Liu HC, Murarka SP (1992) J Appl Phys 72:3458. doi:https://doi.org/10.1063/1.351420

    Article  CAS  Google Scholar 

  11. Shaw LL (1998) Compos Part B-Eng 29:199. doi:https://doi.org/10.1016/S1359-8368(97)00029-2

    Article  Google Scholar 

  12. Hsueh CH (2002) J Appl Phys 91:9652. doi:https://doi.org/10.1063/1.1478137

    Article  CAS  Google Scholar 

  13. Hsueh CH (2002) Thin Solid Films 418:182. doi:https://doi.org/10.1016/S0040-6090(02)00699-5

    Article  CAS  Google Scholar 

  14. Hsueh CH, DeJonghe LC, Lee CS (2006) J Am Ceram Soc 89:251. doi:https://doi.org/10.1111/j.1551-2916.2005.00658.x

    Article  CAS  Google Scholar 

  15. Hu YY, Huang WM (2004) J Appl Phys 96:4154. doi:https://doi.org/10.1063/1.1786339

    Article  CAS  Google Scholar 

  16. Zhang NH, Chen JZ (2008) J Appl Mech 75:044503. doi:https://doi.org/10.1115/1.2912994

    Article  Google Scholar 

  17. Cheon JH, Shankar PS, Singh JP (2005) Supercond Sci Technol 18:142. doi:https://doi.org/10.1088/0953-2048/18/1/022

    Article  CAS  Google Scholar 

  18. Arda L, Ataoglu S, Sezer S, Abdulaliyev Z (2007) Surf Coat Technol 202:439. doi:https://doi.org/10.1016/j.surfcoat.2007.06.008

    Article  CAS  Google Scholar 

  19. Ochando IM, Cáceres D, García-López J, Escobar-Galindo R, Jiménez-Rioboó RJ, Prieto C (2007) Vacuum 81:1457. doi:https://doi.org/10.1016/j.vacuum.2007.04.028

    Article  CAS  Google Scholar 

  20. Lee CK, Kim WS, Park HH, Jeon H, Pae YH (2005) Thin Solid Films 473:335. doi:https://doi.org/10.1016/j.tsf.2004.08.009

    Article  CAS  Google Scholar 

  21. Clickner CC, Ekin JW, Cheggour N, Thieme CLH, Qiao Y, Xie YY et al (2006) Cryogenics 46:432. doi:https://doi.org/10.1016/j.cryogenics.2006.01.014

    Article  CAS  Google Scholar 

  22. Sanchez-Herencia AJ, Pascual C, He J, Lange FF (1999) J Am Ceram Soc 82:1512

    Article  CAS  Google Scholar 

  23. Nagai H (1974) J Appl Phys 45:3789. doi:https://doi.org/10.1063/1.1663861

    Article  CAS  Google Scholar 

  24. Ayers JE, Ghandhi SK, Schowalter LJ (1991) J Cryst Growth 113:430. doi:https://doi.org/10.1016/0022-0248(91)90077-I

    Article  CAS  Google Scholar 

  25. Zheleva T, Jagannadham K, Narayan J (1994) J Appl Phys 75:860. doi:https://doi.org/10.1063/1.356440

    Article  CAS  Google Scholar 

  26. Riesz F (1996) J Vac Sci Technol A 14:425. doi:https://doi.org/10.1116/1.580100

    Article  CAS  Google Scholar 

  27. Huang XR, Bai J, Dudley M, Dupuis RD, Chowdhury U (2005) Appl Phys Lett 86:211916. doi:https://doi.org/10.1063/1.1940123

    Article  CAS  Google Scholar 

  28. Cantoni C, Goyal A, Schoop U, Li X, Rupich MW, Thieme C et al (2005) IEEE Trans Appl Supercond 15:2981. doi:https://doi.org/10.1109/TASC.2005.848691

    Article  CAS  Google Scholar 

  29. Qiu Y, Li M, Liu G, Zhang B, Wang Y, Zhao L (2007) J Cryst Growth 308:325. doi:https://doi.org/10.1016/j.jcrysgro.2007.08.017

    Article  CAS  Google Scholar 

  30. Xiong J, Qin W, Cui X, Tao B, Tang J, Li Y (2006) Physica C 442:124. doi:https://doi.org/10.1016/j.physc.2006.05.024

    Article  CAS  Google Scholar 

  31. Chirayil TG, Paranthaman M, Beach DB, Lee DF, Goyal A, Williams RK et al (2000) Physica C 336:63. doi:https://doi.org/10.1016/S0921-4534(00)00089-7

    Article  CAS  Google Scholar 

  32. Bhuiyan MS, Paranthaman M, Salama K (2006) Supercond Sci Technol 19:R1. doi:https://doi.org/10.1088/0953-2048/19/2/R01

    Article  CAS  Google Scholar 

  33. Molina L, Knoth K, Engel S, Holzapfel B, Eibl O (2006) Supercond Sci Technol 19:1200. doi:https://doi.org/10.1088/0953-2048/19/11/019

    Article  CAS  Google Scholar 

  34. Obrador X et al (2006) Supercond Sci Technol 19:S13. doi:https://doi.org/10.1088/0953-2048/19/3/003

    Article  CAS  Google Scholar 

  35. Celik E, Sayman O, Karakuzu R, Ozman Y (2007) Mater Des 28:2184

    Article  CAS  Google Scholar 

  36. Zhu XB et al (2007) Physica C 467:73. doi:https://doi.org/10.1016/j.physc.2007.08.008

    Article  CAS  Google Scholar 

  37. Knoth K, Hühne R, Oswald S, Schultz L, Holzapfel B (2007) Acta Mater 55:517. doi:https://doi.org/10.1016/j.actamat.2006.08.040

    Article  CAS  Google Scholar 

  38. Darling TW, Migliori A, Moshopoulou EG, Trugman SA, Neumeier JJ, Sarrao JL et al (1998) Phys Rev B 57:5093. doi:https://doi.org/10.1103/PhysRevB.57.5093

    Article  CAS  Google Scholar 

  39. Kartopu G, Es-Souni M (2006) J Appl Phys 99:033501. doi:https://doi.org/10.1063/1.2164534

    Article  CAS  Google Scholar 

  40. Huang QJ, Cheng Y, Liu XJ, Xu XD, Zhang SY (2006) Ultrasonics 44:e1223. doi:https://doi.org/10.1016/j.ultras.2006.05.193

    Article  Google Scholar 

  41. Thurn J, Cook RF (2004) J Mater Sci 39:4809. doi:https://doi.org/10.1023/B:JMSC.0000035319.81486.62

    Article  CAS  Google Scholar 

  42. Hsueh CH, Luttrell CR, Lee S, Wu TC, Lin HY (2006) J Am Ceram Soc 89:1632. doi:https://doi.org/10.1111/j.1551-2916.2006.00924.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. E. D. Specht and Dr. A. Shyam for reviewing the manuscript. This work was jointly sponsored by US Department of Energy, Office of Electricity Delivery and Energy Reliability—Superconductivity for Electric Systems Program and Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Hsueh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsueh, C.H., Paranthaman, M. Analytical modeling of residual stresses in multilayered superconductor systems. J Mater Sci 43, 6223–6232 (2008). https://doi.org/10.1007/s10853-008-2920-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2920-7

Keywords

Navigation