Skip to main content
Log in

Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript


This work evaluates the effect of co-existence of a large volume fraction of δ-ferrite on the hot deformation and dynamic recrystallization (DRX) of austenite using comparative hot torsion tests on AISI 304 austenitic and 2205 duplex stainless steels. The comparison was performed under similar deformation conditions (i.e. temperature and strain rate) and also under similar Zener-Hollomon, Z, values. The torsion data were combined with electron backscatter diffraction (EBSD) analysis to study the microstructure development. The results imply a considerable difference between DRX mechanisms, austenite grain sizes and also DRX kinetics of two steels. Whereas austenitic stainless steel shows the start of DRX at very low strains and then development of that microstructure based on the necklace structure, the DRX phenomena in the austenite phase of duplex structure does not proceed to a very high fraction. Also, the DRX kinetics in the austenitic steel are much higher than the austenite phase of the duplex steel. The results suggest that at a similar deformation condition the DRX grain size of austenitic steel is almost three times larger than the DRX grains of austenite phase in duplex steel. Similarly, the ratio of DRX grain size in the austenitic to the duplex structure at the same Z values is about 1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others


  1. Belyakov A, Miura H, Sakai T (1998) Mater Sci Eng A 255:139. doi:

    Article  Google Scholar 

  2. Dehghan-Manshadi A, Beladi H, Barnett MR, Hodgson PD (2004) Mater Forum 467–470:1163

    Article  Google Scholar 

  3. Ryan ND, McQueen HJ (1990) Can Metall Quart 29:147

    Article  CAS  Google Scholar 

  4. Salvatori I, Inoue T, Nagai K (2002) ISIJ Int 42:744. doi:

    Article  CAS  Google Scholar 

  5. Sakai T (1995) J Mater Process Technol 53:349. doi:

    Article  Google Scholar 

  6. Sellars CM (1979) In: Sellars CM, Davies CHJ (eds) Hot working and forming process. The Metal Society, London

  7. Sakai T, Miura H (1996) In: McQueen HJ, Konopleva EV, Ryan ND (eds) Hot workability of steels and light alloys-composites. The Metallurgical Society of CIM, Montreal

  8. Hodgson PD, Gloss RE, Dunlop GL (1990) In: Kassner ME (ed) 32nd mechanical working and steel processing. Iss-AIME, Warrendale

  9. Karjalainen LP, Maccagno TM, Jonas JJ (1995) ISIJ Int 35:1523. doi:

    Article  CAS  Google Scholar 

  10. Dehghan-Manshadi A, Barnett MR, Hodgson PD (2008) Mater Sci Eng A 458:664. doi:

    Article  Google Scholar 

  11. Ponge D, Gottstein G (1998) Acta Mater 46:69. doi:

    Article  CAS  Google Scholar 

  12. Sah JP, Richardson CJ, Sellars CM (1974) Metal Sci 8:325

    Article  CAS  Google Scholar 

  13. Hornbogen E, Koster U (1980) In: Hansen N, Jones AR, Leffers T (eds) Recrystallization and grain growth of multi-phase and particle containing materials. Riso National Laboratory, Roskilde

  14. Maki T, Furuhara T, Tsuzaki K (2001) ISIJ Int 41:571. doi:

    Article  CAS  Google Scholar 

  15. Belyakov A, Kimura Y, Tsuzaki K (2006) Acta Mater 54:2521. doi:

    Article  CAS  Google Scholar 

  16. Tsuzaki K, Xiaoxu H, Maki T (1996) Acta Mater 44:4491. doi:

    Article  CAS  Google Scholar 

  17. Dehghan-Manshadi A, Barnett MR, Hodgson PD (2007) Mater Sci Technol 23:1478. doi:

    Article  CAS  Google Scholar 

  18. Iza-Mendia A, Pinol-Juez A, Urcola JJ, Gutierrez I (1998) Metall Mater Trans A 29:2975. doi:

    Article  Google Scholar 

  19. Barteri M, Mecozzi MG (1994) In: Gooch TG (ed) Duplex stainless steel. Abington Publishing, Glasgow

  20. Weiss H, Skinner DH, Everett JR (1973) J Phys E 6:709. doi:

    Article  Google Scholar 

  21. Dehghan-Manshadi A (2007) The evolution of recrystallization during and following hot deformation. PhD Thesis, Deakin University, Geelong, Victoria, Australia

  22. Higginson RL, Sellars CM (2003) Worked examples in quantitive metallography. Maney Publishing, London

    Google Scholar 

  23. Belyakov A, Kimura Y, Tsuzaki K (2005) Mater Sci Eng A 403:249. doi:

    Article  Google Scholar 

  24. Cizek P, Safek V, Cerny V (1989) Hutnicke Listy 43:99

    Google Scholar 

  25. Gao F, Xu Y, Xia K (2000) Metall Mater Trans A 31:21. doi:

    Article  Google Scholar 

  26. Konopleva EV, Sauerborn M, McQueen HJ, Ryan ND, Zaripova RG (1997) Mater Sci Eng A 234–236:826. doi:

    Article  Google Scholar 

  27. Evangelista E, McQueen HJ, Niewczas M, Cabibbo M (2004) Can Metall Quart 43:339

    Article  CAS  Google Scholar 

  28. Dehghan-Manshadi A, Barnett MR, Hodgson PD (2008) Metall Mater Trans A 31:1359. doi:

    Article  Google Scholar 

  29. Humphreys FJ, Hatherly M (1996) Recrystallization and related annealing phenomena. Pergamon, Oxford

    Google Scholar 

  30. Gourdet S, Montheillet F (2003) Acta Mater 51:2658. doi:

    Article  Google Scholar 

  31. Sakai T, Jonas JJ (1984) Acta Metall 32:189. doi:

    Article  CAS  Google Scholar 

  32. Belyakov A, Tsuzaki K, Miura H, Sakai T (2003) Acta Mater 51:847. doi:

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. Dehghan-Manshadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehghan-Manshadi, A., Hodgson, P.D. Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite. J Mater Sci 43, 6272–6277 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: