Skip to main content
Log in

Mesoporous niobium oxides with tailored pore structures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel thermally stable and 2D mesoporous niobia phases were prepared by the evaporation induced self-assembly (EISA) with high surface areas (up to 211 m2/g). The pore size of these novel mesoporous niobium oxides was tuned in a wide range from 4.6 to 21 nm by increasing the aging temperature, aging time, and humidity of aging atmosphere. Mixtures of two nonionic surfactants, Pluronic P123 and Brij 35, were for the first time used to tune the pore structure of resultant mesoporous niobia phases which showed that the mesopore shape may be switched from cylindrical to ink-bottle. The niobia mesostructures obtained in this study were thermally stable up to 500 °C. These novel mesoporous niobium oxides with tunable pore sizes are highly promising as catalytic supports and a major component in the synthesis of porous Nb-containing mixed metal oxides, such as MoVTeNbOx catalysts for selective (amm)oxidation of propane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. (a) Tanabe K (1990) Catal Today 8:1. doi:https://doi.org/10.1016/0920-5861(90)87003-L; (b) Japan Patent Kokai (1987) 62-27 043, to Nippon Shokubai Co. Ltd; (c) US Patent 4,665,200 (1987), to Nippon Shokubai Co. Ltd; (d) US Patent 4,781,862 (1988), to Montvale Process Co. Inc.

    Article  CAS  Google Scholar 

  2. Desponds O, Keiski RL, Somorjai GA (1993) Catal Lett 19:17

    Article  CAS  Google Scholar 

  3. Jehng JM, Turek AM, Wachs IE (1992) Appl Catal 83:179. doi:https://doi.org/10.1016/0926-860X(92)85034-9

    Article  CAS  Google Scholar 

  4. Deo G, Wachs IE (1991) J Catal 129:307. doi:https://doi.org/10.1016/0021-9517(91)90036-4

    Article  CAS  Google Scholar 

  5. Wachs IE, Jehng JM, Deo G, Hu H, Arora N (1996) Catal Today 28:199. doi:https://doi.org/10.1016/0920-5861(95)00229-4

    Article  CAS  Google Scholar 

  6. Smits RHH, Seshan K, Leemreize H, Ross JRH (1993) Catal Today 16:513

    Article  CAS  Google Scholar 

  7. Yuan L, Bhatt S, Beaucage G, Guliants VV, Mamedov S, Soman RS (2005) J Phys Chem B 109:23250. doi:https://doi.org/10.1021/jp054218p

    Article  CAS  Google Scholar 

  8. Evans OR, Bell AT, Tilley TD (2004) J Catal 226:292. doi:https://doi.org/10.1016/j.jcat.2004.06.002

    Article  CAS  Google Scholar 

  9. Sun G, Xu A, He Y, Yang M, Du H, Sun C (2008) J Hazard Mater 156:335. doi:https://doi.org/10.1016/j.jhazmat.2007.12.023

    Article  CAS  Google Scholar 

  10. Antonelli DM, Ying JY (1996) Angew Chem 108:461. doi:https://doi.org/10.1002/ange.19961080413

    Article  Google Scholar 

  11. Antonelli DM, Ying JY (1996) Angew Chem Int Ed Engl 35:426. doi:https://doi.org/10.1002/anie.199604261

    Article  CAS  Google Scholar 

  12. Antonelli DM, Nakahira A, Ying JY (1996) Inorg Chem 35:3126. doi:https://doi.org/10.1021/ic951533p

    Article  CAS  Google Scholar 

  13. Sun T, Ying JY (1998) Angew Chem Int Ed 37:664. doi:10.1002/(SICI)1521-3773(19980316)37:5<664::AID-ANIE664>3.0.CO;2-T

    Article  CAS  Google Scholar 

  14. Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1999) Chem Mater 11:2813. doi:https://doi.org/10.1021/cm990185c

    Article  CAS  Google Scholar 

  15. Lee B, Lu DL, Kondo JN, Domen K (2002) J Am Chem Soc 124:11256. doi:https://doi.org/10.1021/ja026838z

    Article  CAS  Google Scholar 

  16. Katou T, Lu DL, Kondo JN, Domen K (2002) J Mater Chem 12:1480. doi:https://doi.org/10.1039/b200380e

    Article  CAS  Google Scholar 

  17. Altwasser S, Glaser R, Weitkamp J (2007) Microporous Mesoporous Mater 104:281. doi:https://doi.org/10.1016/j.micromeso.2007.02.046

    Article  CAS  Google Scholar 

  18. Song C, Garcés JM, Sugi Y (2000) Shape-selective catalysis: chemicals synthesis and hydrocarbon processing. ACS symposium series 738, Oxford University Press

  19. Thomas JM, Raja R (2007) Top Catal 40:3. doi:https://doi.org/10.1007/s11244-006-0105-7

    Article  Google Scholar 

  20. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New York

    Google Scholar 

  21. Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Adv Mater 11:579. doi:10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R

    Article  CAS  Google Scholar 

  22. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373. doi:https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  23. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309. doi:https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  24. Huo Q, Margolese D, Stucky GD (1996) Chem Mater 8:1147

    Article  CAS  Google Scholar 

  25. Kruk M, Jaroniec M, Sayari A (1997) Langmuir 13:6267. doi:https://doi.org/10.1021/la970776m

    Article  CAS  Google Scholar 

  26. Frevel R (1955) Anal Chem 27:1329. doi:https://doi.org/10.1021/ac60104a035

    Article  CAS  Google Scholar 

  27. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF et al (1998) Science 279:548. doi:https://doi.org/10.1126/science.279.5350.548

    Article  CAS  Google Scholar 

  28. Galarneau A (2001) Langmuir 17:8328. doi:https://doi.org/10.1021/la0105477

    Article  CAS  Google Scholar 

  29. Voort P, Benjelloun M, Vansant E (2002) J Phys Chem B 106:9027. doi:https://doi.org/10.1021/jp0261152

    Article  Google Scholar 

  30. Goltner-Spickermann C (2002) Curr Opin Colloid Interface Sci 7:173. doi:https://doi.org/10.1016/S1359-0294(02)00046-8

    Article  CAS  Google Scholar 

  31. Tian B, Liu X, Zhang Z, Tu B, Zhao DY (2002) J Solid State Chem 167:324

    Article  CAS  Google Scholar 

  32. Smitha S, Shajesh P, Aravind PR, Kumar SR, Pillai PK, Warrier KGK (2006) Microporous Mesoporous Mater 91:286. doi:https://doi.org/10.1016/j.micromeso.2005.11.051

    Article  CAS  Google Scholar 

  33. Crepaldi E, Soler-Illia GJAA, Bouchara A, Grosso D, Durand D, Sanchez C (2003) Angew Chem Int Ed 42:347. doi:https://doi.org/10.1002/anie.200390113

    Article  CAS  Google Scholar 

  34. Crepaldi E, Soler-Illia GJAA, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) J Am Chem Soc 125:9770. doi:https://doi.org/10.1021/ja030070g

    Article  CAS  Google Scholar 

  35. Huo Q, Leon R, Petroff PM, Stucky GD (1995) Science 268:1324. doi:https://doi.org/10.1126/science.268.5215.1324

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation under NSF CAREER Award CTS#0238962 to Dr. Vadim V. Guliants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim V. Guliants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, L., Guliants, V.V. Mesoporous niobium oxides with tailored pore structures. J Mater Sci 43, 6278–6284 (2008). https://doi.org/10.1007/s10853-008-2904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2904-7

Keywords

Navigation