Skip to main content

Advertisement

Log in

Development and verification of a meso-scale based dynamic material model for plain-woven single-ply ballistic fabric

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A meso-scale unit-cell based continuum material constitutive model has been developed for plain-woven single-ply ballistic fabric materials. This model, due to its computational efficiency, is suitable for use in computational analyses of the ballistic-protection performance of multi-layer body-armor vests. The model utilizes the continuum-level in-plane and out-of-plane deformation-state of the material, an energy minimization procedure and a simple account of yarn slip to update the structure/architecture of the fabric unit cell. Forces and moments developed within the structural components of the unit cell are then used to compute the continuum-level stress state at the material points associated with the unit cell in question. The model is implemented in a user-material subroutine suitable for use within commercial finite-element programs. To validate the model, a series of transient non-linear dynamic analyses of the impact of a square-shaped fabric patch with a spherical projectile is carried out and the computed results compared with their counterparts obtained using a more traditional finite-element approach within which yarns and yarn weaving are modeled explicitly. The results obtained show that the material model provides a reasonably good description for the fabric deformation and fracture behavior under a variety of boundary conditions applied to fabric edges and under varying fictional conditions present at the yarn/yarn and projectile/fabric interfaces. In addition, the overall ballistic energy absorption capacity of the fabric as well as its yarn-strain energy, yarn-kinetic energy, and frictional sliding contributions are predicted with reasonable accuracy by the proposed material model for fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. MIT Nano Soldier Institute for Soldier Nanotechnologies Massachusetts Institute of Technology, Cambridge, MA, https://doi.org/www.web.mit.edu/ISN/

  2. King MJ, Jearanaisilawong P, Socrate S (2005) Int J Solids Struct 42:3867. doi:https://doi.org/10.1016/j.ijsolstr.2004.10.030

    Article  Google Scholar 

  3. Wittman RE, Rolsten RF (1967) Armor of men and aircraft. In: 12th national SAMPE symposium

  4. The Interceptor System US Marine Corps (https://doi.org/www.marines.mil/marinelink/image1.nsf/lookup/200532317129?opendocument)

  5. Roylance D, Wang SS (1980) Penetration mechanics of textile structures ballistic materials and penetration mechanics. Elsevier, Amsterdam, p 273

    Book  Google Scholar 

  6. Shim VPW, Lim CT, Foo KJ (2001) Int J Impact Eng 25:1. doi:https://doi.org/10.1016/S0734-743X(00)00038-5

    Article  Google Scholar 

  7. Lim CT, Shim VPW, Ng YH (2003) Int J Impact Eng 28:13. doi:https://doi.org/10.1016/S0734-743X(02)00031-3

    Article  Google Scholar 

  8. Shahkarami A, Vaziri R, Poursartip A, Williams K (2002) A numerical investigation of the effect of projectile mass on the energy absorption of fabric panels subjected to ballistic impact. In: Proceedings of the 20th international symposium on ballistics, pp 802–809

  9. Johnson GR, Beissel SR, Cunniff PM (1999) A computational model for fabrics subjected to ballistic impact. In: Proceedings of the 18th international symposium on ballistics, San Antonio, vol 2, pp 962–969

  10. Billon HH, Robinson DJ (2001) Int J Impact Eng 25:411. doi:https://doi.org/10.1016/S0734-743X(00)00049-X

    Article  Google Scholar 

  11. Shockey DA, Erlich DC, Simons JW (2000) Improved barriers to turbine engine fragments, US department of transportation. SRI International, Menlo Park

    Google Scholar 

  12. Duan Y, Keefe M, Bogetti TA, Cheeseman BA (2005) Int J Impact Eng 31:996. doi:https://doi.org/10.1016/j.ijimpeng.2004.06.008

    Article  Google Scholar 

  13. Duan Y, Keefe M, Bogetti TA, Cheeseman BA (2005) Int Compos Struct 68:331. doi:https://doi.org/10.1016/j.compstruct.2004.03.026

    Article  Google Scholar 

  14. Duan Y, Keefe M, Bogetti TA, Cheeseman BA, Powers B (2006) Int J Impact Eng 32:1299. doi:https://doi.org/10.1016/j.ijimpeng.2004.11.005

    Article  Google Scholar 

  15. Duan Y, Keefe M, Bogetti TA, Powers B (2006) Int J Mech Sci 48:33. doi:https://doi.org/10.1016/j.ijmecsci.2005.09.007

    Article  Google Scholar 

  16. Zhang GM, Batra RC, Zheng J (in press) Compos Part B

  17. Kawabata S, Niwa M, Kawai H (1973) J Text Inst 64:21

    Article  Google Scholar 

  18. Kawabata S, Niwa M, Kawai H (1973) J Text Inst 64:47

    Article  Google Scholar 

  19. Kawabata S, Niwa M, Kawai H (1973) J Text Inst 64:62

    Article  Google Scholar 

  20. Ivanov I, Tabiei A (2004) Int J Numer Methods Eng 61:1565. doi:https://doi.org/10.1002/nme.1113

    Article  Google Scholar 

  21. Boisse P, Zouari B, Gasser A (2005) Compos Sci Technol 65:429. doi:https://doi.org/10.1016/j.compscitech.2004.09.024

    Article  Google Scholar 

  22. Peng X, Cao J (2002) Compos Part B Eng 33:45. doi:https://doi.org/10.1016/S1359-8368(01)00052-X

    Article  CAS  Google Scholar 

  23. Shahkarami A, Vaziri R (2007) Int J Impact Eng 34:104. doi:https://doi.org/10.1016/j.ijimpeng.2006.06.010

    Article  Google Scholar 

  24. Scott BR, Yen CF (2005) Analytic design trends in fabric armor. In: Proceedings of the 22nd international ballistics symposium, pp 752–760

  25. Simplex Method: in Numerical Recipes, https://doi.org/library.lanl.gov/numerical/index.html

  26. Version ABAQUS 6.7.4, User Documentation, Dassault Systems, 2007

  27. King MJ (2006) A continuum constitutive model for the mechanical behavior of woven fabrics including slip and failure. Ph.D. Thesis, MIT

  28. Grujicic M, Arakere G, He T, Gogulapati M, Cheeseman BA (2008) J Mater: Des Appl (accepted)

  29. Tan VBC, Lim CT, Cheong CH (2003) Int J Impact Eng 28:207

    Article  Google Scholar 

Download references

Acknowledgements

The material presented in this article is based on work supported by the U.S. Army/Clemson University Cooperative Agreements W911NF-04-2-0024 and W911NF-06-2-0042. The authors are indebted to Dr. Fred Stanton for the support and a continuing interest in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grujicic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Bell, W.C., He, T. et al. Development and verification of a meso-scale based dynamic material model for plain-woven single-ply ballistic fabric. J Mater Sci 43, 6301–6323 (2008). https://doi.org/10.1007/s10853-008-2893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2893-6

Keywords

Navigation