Skip to main content
Log in

Dynamic wetting and heat transfer at the initiation of aluminum solidification on copper substrates

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dynamic wetting and heat transfer during the start of solidification were studied with the help of molten aluminum droplets falling from a crucible onto a copper substrate. A high-speed camera captured the change in the spreading droplet’s geometry, while thermocouple, inserted inside the substrate, allowed a heat transfer analysis to be performed. Droplet spreading factors and interfacial heat fluxes were then used to, respectively, characterize dynamic wetting and heat transfer for the various experimental conditions explored. These were: (1) effects of chemical composition of the aluminum alloy, (2) initial temperature of the substrate, (3) surface roughness of the substrate, and (4) composition of the gaseous atmosphere. The experiments were all carried out in gaseous atmospheres containing oxygen in sufficient amount to form oxide skins at the surface of the droplets and the substrates. The results showed instances where an improvement in the dynamic wetting was accompanied by an increase in heat transfer during the early stages of solidification but this was not systematic. In these cases where a positive correlation was not observed, it was postulated this was caused by factors such as variations in the oxidation at the surface of the substrates and the droplets as well as gas trapped at the interface between the droplets and the substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

C :

Heat capacity (kJ kg−1 K−1)

d :

Droplet diameter (m)

E K :

Kinetic energy (J)

E surf :

Surface energy (J)

h :

Height of fall (m)

i :

Node identification in the numerical analysis

J :

Total number of thermocouples

k :

Thermal conductivity (W m−1 K−1)

m :

Number of time intervals for inverse calculations or droplet mass (kg)

n :

Iteration number in Eqs. 6 and 7

N :

Total number of nodes

q :

Interfacial heat flux per unit area (W m−2)

t :

Time (s)

T :

Temperature (K)

T o :

Initial temperature (K)

r :

Number of future time-steps

v :

Velocity (m/s)

We :

Weber number

x :

Length (m)

Y :

Measured temperatures (K)

Z :

Sensitivity coefficient (W K m−2)

δ:

Incremental heat flux factor

γ:

Surface tension (N m−1)

θ:

Contact angle

ρ:

Density (kg m−3)

σ:

Surface energy (J m−2)

ξ:

Spreading factor

References

  1. Dong S, Niiyama E, Anzai K (1994) Mater Trans JIM 35:196

    Article  Google Scholar 

  2. Jacobson LA, McKittrick J (1994) Mater Sci Eng R 11:355

    Article  Google Scholar 

  3. Adler PI, Hsu SC (1983) In: Mehrabian R (ed) Rapid solidification processing: principles and technologies, vol 3. Taiwan Institute of Technology, Taiwan, p 448

    Google Scholar 

  4. Maringer RE (1988) Mater Sci Eng 98:13. doi:https://doi.org/10.1016/0025-5416(88)90117-6

    Article  CAS  Google Scholar 

  5. Ebrill N (2000) PhD Thesis University of Newcastle, Callaghan, Australia

  6. Ebrill N, Durandet Y, Strezov L (2001) Trans JWRI Jpn 30:351

    CAS  Google Scholar 

  7. Ebrill N, Durandet Y, Strezov L (2001) Verlag Stahleisen GMBH, Galvatech, p 329

  8. Ebrill N, Durandet Y, Strezov L (2000) Metall Mater Trans B 31B:1069. doi:https://doi.org/10.1007/s11663-000-0082-3

    Article  CAS  Google Scholar 

  9. Ulrich J, Berg M, Bauckhage K (1999) In: Mishra B (ed) EPD Congress, The Minerals, Metals & Materials Society,Warrendale, p 105

  10. Amada S, Haruyama M, Ohyagi T, Tomoyasu K (2001) Surf Coat Tech 138:211. doi:https://doi.org/10.1016/S0257-8972(00)01077-X

    Article  CAS  Google Scholar 

  11. Nishioka E, Matsubara T, Fufumoto M (2001) Int J Mater Prod Technol SPM1 (Special Issue):700

  12. Fukai J, Asami H, Miyatake O (1998) Minerals, Metals and Materials Society/AIME, Warrendale, p 473

  13. Megaridis CM, Boomsma K, Bayer IS (2004) Fluid Mech Transp Phenom 50:1356

    CAS  Google Scholar 

  14. Schiaffino S, Sonin AA (1997) Phys Fluids 9:2217. doi:https://doi.org/10.1063/1.869344

    Article  CAS  Google Scholar 

  15. Rioboo R, Adao MH, Voué M, De Coninck J (2006) J Mater Sci 41:5068. doi:https://doi.org/10.1007/s10853-006-0445-5

    Article  CAS  Google Scholar 

  16. Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon, New York

    Google Scholar 

  17. Liu W, Wang GX, Matthys EF (1992) HTD 196:111

    CAS  Google Scholar 

  18. Liu W, Wang GX, Matthys EF (1995) Int J Heat Mass Transfer 38:1387. doi:https://doi.org/10.1016/0017-9310(94)00262-T

    Article  CAS  Google Scholar 

  19. Wang GX, Matthys EF (1994) In: Proceedings of the 10th international heat transfer conference, 1994. IchemE Pub, Brighton, p 169

  20. Todoroki H, Lertarmon R, Cramb AW, Suzuki T (1999) Iron Steelmaker 26:57

    CAS  Google Scholar 

  21. Todoroki H, Lertarmon R, Suzuki T, Cramb AW (1997) In: 80th Steelmaking conference proceedings, 1997. Iron and Steel Society/AIME, Warrendale, p 667

  22. Todoroki H, Lertarmon R, Suzuki T, Cramb AW (1997) Minerals, Metals and Materials Society/AIME, Warrendale, p 2227

  23. Misra P, Phininchka N, Cramb AW (2003) In: ISSTech 2003 conference proceeding. Iron and Steel Society/AIME, Warrendale, p 263

  24. Loulou T, Artyukhin EA, Bardon JP (1999) Int J Heat Mass Transfer 42:2129. doi:https://doi.org/10.1016/S0017-9310(98)00338-X

    Article  CAS  Google Scholar 

  25. Loulou T, Bardon JP (2000) High Temp Mater Process 4:69

    Article  CAS  Google Scholar 

  26. Evans T, Strezov L (2000) Metall Mater Trans B 31B:1081. doi:https://doi.org/10.1007/s11663-000-0083-2

    Article  CAS  Google Scholar 

  27. Leboeuf S, Bouchard D, Nadeau JP, Guthrie RIL, Isac M (2003) In: Masounave J, Dufour G (eds) Proceedings of the international symposium on light metals 2003 Métaux Légers, CIM, Montreal, p 215

  28. Massey BS (1989) Mechanics of fluids, 6th edn. Van Nostrand Reinhold Int, London, UK

    Book  Google Scholar 

  29. Matson DM, Rolland M, Flemings MC (1998) Solidification 1998. The Minerals, Metals and Materials Society/AIME, Warrendale, p 389

    Google Scholar 

  30. Kubaschewski O, Alcock CB, Spencer PJ (1993) Materials thermochemistry, vol 6. Pergamon Press Ltd, New York, p 274

    Google Scholar 

  31. Touloukian YS, Powell RW, Ho CY, Klemens PG (1970) Thermophysical properties of matter, vol 1. Plenum Publishing Corp, New York, p 81

    Google Scholar 

  32. Poirier DR, Geiger GH (1994) Transport phenomena in materials processing. The Minerals Metals and Materials Society, Warrendale, USA

    Google Scholar 

  33. Egry I, Schneider S, Seyhan I, Volkmann T (2001) Trans JWRI 30:195

    CAS  Google Scholar 

  34. Li G, Thomas BG (1996) Metall Mater Trans B 27B:509. doi:https://doi.org/10.1007/BF02914916

    Article  CAS  Google Scholar 

  35. Beck JV, Blackwell B, St. Clair CR (1985) Inverse heat conduction. Wiley-Interscience Publication, New York

    Google Scholar 

  36. Bouchard D, Howes B, Paumelle C, Nadeau JP, Simard D (2002) Metall Mater Trans B 33B:403. doi:https://doi.org/10.1007/s11663-002-0052-z

    Article  CAS  Google Scholar 

  37. Gaskell DR (1981) Introduction to metallurgical thermodynamics, 2nd edn. McGraw-Hill Book Co., New York

    Google Scholar 

  38. Nishida Y, Drosti W, Engler S (1986) Metall Trans 17B:833

    Article  CAS  Google Scholar 

  39. Wang G-X, Matthys EF (1994) In: Proceedings of the 10th international heat transfer conference. IchemE Pub.,UK, p 169

  40. Strezov L, Herbertson J (1998) Iron Steel Inst Jpn Int 38:959

    Article  CAS  Google Scholar 

  41. Pehlke RD (1995) Modeling of casting, welding and advanced solidification processes VII. TMS, Warrendale, PA, p 373

    Google Scholar 

  42. Ho K, Pehlke RD (1985) Metall Trans B 16B:585

    Article  CAS  Google Scholar 

  43. Ho K, Pehlke RD (1983) AFS Trans 91:689

    Google Scholar 

  44. Thermo-Calc Windows version 4, Stockholm, Sweden, 2006

  45. Lang G (1974) Aluminum 50–51:731

    Google Scholar 

  46. Muojekwu CA, Samarasekera IV, Brimacombe JK (1995) Metall Mater Trans B 26B:361. doi:https://doi.org/10.1007/BF02660979

    Article  CAS  Google Scholar 

  47. Prates M, Biloni H (1972) Metall Trans 3:1501. doi:https://doi.org/10.1007/BF02643039

    Article  CAS  Google Scholar 

  48. Bejan A, Kraus AD (2003) Heat transfer handbook. John Wiley & Sons, Inc., Hoboken, NJ, p 151

  49. Aussillous P, Quéré D (2001) Nature 411:924. doi:https://doi.org/10.1038/35082026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Technical assistance from Daniel Simard, Christian Corbeil, Hugues Blanchette. Geneviève Simard, Hélène Grégoire, and Marie-Ève Larouche from the Aluminum Technology Center are acknowledged. The authors would also like to thank Centre québécois de recherche et de développement de l’aluminium (CQRDA) and Fond québécois de la recherche sur la nature et les technologies (FQRNT) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Bouchard.

Additional information

Sébastien Leboeuf formerly with the Aluminum Technology Centre and McGill University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchard, D., Leboeuf, S., Nadeau, JP. et al. Dynamic wetting and heat transfer at the initiation of aluminum solidification on copper substrates. J Mater Sci 44, 1923–1933 (2009). https://doi.org/10.1007/s10853-008-2888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2888-3

Keywords

Navigation