Skip to main content
Log in

Multiscale modeling of intergranular fracture in aluminum: constitutive relation for interface debonding

  • Ultrafine-Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics—finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction–displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum–atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum–atomistic interface, and continues its propagation in the atomistic environment. This study is a step toward relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yamakov V, Phillips DR, Saether E, Glaessgen EH (2007) In: Bozzolo GH, Noebe RD, Abel P (eds) Applied computational materials modeling: theory, experiment, and simulation. Springer. ISBN 978-0-387-23117-4

  2. Glaessgen E, Saether E, Phillips D, Yamakov V (2006) 47th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference and exhibit, Newport, RI, May 1–4, 2006

  3. Dugdale DS (1960) J Mech Phys Solids 8:100. doi:https://doi.org/10.1016/0022-5096(60)90013-2

    Article  Google Scholar 

  4. Barenblatt GI (1962) Adv Appl Mech 7:55

    Article  Google Scholar 

  5. Yamakov V, Saether E, Phillips DR, Glaessgen EH (2006) J Mech Phys Solids 54:1899. doi:https://doi.org/10.1016/j.jmps.2006.03.004

    Article  CAS  Google Scholar 

  6. Tvergaard V, Hutchinson JW (1996) Int J Solids Struct 33:3297. doi:https://doi.org/10.1016/0020-7683(95)00261-8

    Article  Google Scholar 

  7. Beer G (1985) Int J Numer Methods Eng 21:585. doi:https://doi.org/10.1002/nme.1620210402

    Article  Google Scholar 

  8. Gall K, Horstemeyer MF, Van Schilfgaarde M, Baskes MI (2000) J Mech Phys Solids 48:2183. doi:https://doi.org/10.1016/S0022-5096(99)00086-1

    Article  CAS  Google Scholar 

  9. Komanduri R, Chandrasekaran N, Raff LM (2001) Int J Mech Sci 43:2237. doi:https://doi.org/10.1016/S0020-7403(01)00043-1

    Article  Google Scholar 

  10. Spearot D, Jacob KI, Mcdowell DL (2004) Mech Mater 36:825

    Article  Google Scholar 

  11. Raynolds JE, Smith JR, Zhao G-L, Srolovitz DJ (1996) Phys Rev B 53:13883. doi:https://doi.org/10.1103/PhysRevB.53.13883

    Article  CAS  Google Scholar 

  12. Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Phys Rev B 59:3393. doi:https://doi.org/10.1103/PhysRevB.59.3393

    Article  CAS  Google Scholar 

  13. Saether E, Yamakov V, Glaessgen E (2007) 49th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference

  14. Saether E, Yamakov V, Glaessgen E (submitted) Int J Numer Meth Eng

  15. Cleri F (2001) Phys Rev B 65:014107. doi:https://doi.org/10.1103/PhysRevB.65.014107

    Article  Google Scholar 

  16. Parrinello M, Rahman A (1981) J Appl Phys 52:7182. doi:https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  17. Nose S (1984) J Chem Phys 81:511. doi:https://doi.org/10.1063/1.447334

    Article  CAS  Google Scholar 

  18. Yamakov V, Saether E, Phillips DR, Glaessgen EH (2007) J Mater Sci 42:1466. doi:https://doi.org/10.1007/s10853-006-1176-3

    Article  CAS  Google Scholar 

  19. Yamakov V, Saether E, Phillips DR, Glaessgen EH (2005) Phys Rev Lett 95:015502. doi:https://doi.org/10.1103/PhysRevLett.95.015502

    Article  CAS  Google Scholar 

  20. Murakami Y (ed) (1988) Stress intensity factors handbook, vol 1. Pergamon Press, New York

    Google Scholar 

  21. Klimontovich YL (1995) Statistical theory of open systems, vol 1. Kluwer Academic Publishers, Netherlands

    Book  Google Scholar 

Download references

Acknowledgement

V. Yamakov is sponsored through cooperative agreement NCC-1-02043 with the National Institute of Aerospace.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yamakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamakov, V., Saether, E. & Glaessgen, E.H. Multiscale modeling of intergranular fracture in aluminum: constitutive relation for interface debonding. J Mater Sci 43, 7488–7494 (2008). https://doi.org/10.1007/s10853-008-2823-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2823-7

Keywords

Navigation