Journal of Materials Science

, Volume 43, Issue 19, pp 6539–6545 | Cite as

Photoluminescent properties of ZnS:Mn nanoparticles with in-built surfactant

  • Zinki JindalEmail author
  • N. K. Verma


Mn-doped ZnS nanoparticles, having average diameter 3–5 nm, have been synthesized using chemical precipitation technique without using any external capping agent. Zinc blende crystal structure has been confirmed using the X-ray diffraction studies. The effect of various concentrations of Mn doping on the photoluminescent properties of ZnS nanoparticles has been studied. The time-resolved photoluminescence spectra of the ZnS:Mn quantum dots have been recorded and various parameters like lifetimes, trap depths, and decay constant have been calculated from the decay curves at room temperature. The band gap was calculated using UV–Visible absorption spectra.


Trap Depth Chemical Precipitation Method Orange Emission Yellowish Green Band Escape Frequency Factor 



We acknowledge Defence Research and Development Organisation (DRDO), Government of India, for their generous funding for the research work vide their letter No. ERIP/ER/0504321/M/01/855 dated 16th December 2005.


  1. 1.
    Bhargava RN (1997) J Lumin 72–74:46. doi: CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Zhao Y, Zhang Y, Zhu H, Hadjipanayis GC, Xiao JQ (2004) J Am Chem Soc 126:6874. doi: CrossRefGoogle Scholar
  4. 4.
    Lu SW, Lee BI, Wang ZL, Tong W, Wagner BK, Park W et al (2001) J Lumin 92:73. doi: CrossRefGoogle Scholar
  5. 5.
    Hu JT, Li LS, Yang WD, Manna L, Wang LW, Alivisatos AP (2001) Science 292:2060. doi: CrossRefGoogle Scholar
  6. 6.
    Cruz AB, Shen Q, Toyoda T (2005) Mater Sci Eng C 25:761. doi: CrossRefGoogle Scholar
  7. 7.
    Denzler D, Olschewski M, Sattler K (1998) J Appl Phys 84:2841. doi: CrossRefGoogle Scholar
  8. 8.
    Chen W, Sammynaiken R, Huang Y, Malm JO, Wallenberg R, Bovin JO et al (2001) J Appl Phys 89:1120. doi: CrossRefGoogle Scholar
  9. 9.
    Kubo T, Isobe T, Sena M (2002) J Lumin 99:39. doi: CrossRefGoogle Scholar
  10. 10.
    Lacomi F (2003) Surf Sci 532:816. doi: Google Scholar
  11. 11.
    Yuan H, Xie S, Liu D, Yan X, Zhou Z, Ci L (2003) J Cryst Growth 258:225. doi: CrossRefGoogle Scholar
  12. 12.
    Kim D, Min K, Lee J, Park JH, Chun JH (2006) Mater Sci Eng B 131:13. doi: CrossRefGoogle Scholar
  13. 13.
    Cullity BD (1956) Element of X-ray diffraction, 2nd edn. Addison-Wesley, New York, p 99Google Scholar
  14. 14.
    Yao JH, Elder KR, Guo H, Grant M (1993) Phys Rev B 47:14110. doi: CrossRefGoogle Scholar
  15. 15.
    Warad HC, Gosh SC, Hemtanon B, Thanochayonont C, Dutta J (2005) Sci Technol Adv Mater 6:296CrossRefGoogle Scholar
  16. 16.
    Zou X, Ying E, Dong S (2006) Nanotechnology 17:4758. doi: CrossRefGoogle Scholar
  17. 17.
    Silverstein RM, Clayton Bassler G, Morrill TC (1991) Spectrometric identification of organic compounds, 5th edn. Wiley, New York, pp 91–164Google Scholar
  18. 18.
    Bol AA, Meijerink A (1998) Phys Rev B 58:R15997. doi: CrossRefGoogle Scholar
  19. 19.
    Kar S, Chaudhari S (2005) J Phys Chem B 109:3298. doi: CrossRefGoogle Scholar
  20. 20.
    Falcony C, Garcia M, Ortiz A, Zlonso JC (1992) J Appl Phys 72:1525. doi: CrossRefGoogle Scholar
  21. 21.
    Samelson H, Lempicki A (1962) Phys Rev 125:901. doi: CrossRefGoogle Scholar
  22. 22.
    Bhatti HS, Sharma R, Verma NK (2005) Parmana 65:541. doi: CrossRefGoogle Scholar
  23. 23.
    Cruz AB, Shen Q, Toyoda T (2005) Jpn J Appl Phys 44:4354. doi: CrossRefGoogle Scholar
  24. 24.
    Bhattacharyya D, Chaudhari S, Pal AK (1992) Vacuum 43:313. doi: CrossRefGoogle Scholar
  25. 25.
    Vlasenko NA, Zynio SA, Kopytiko Y (1975) Phys Stat Solidi a 29:671CrossRefGoogle Scholar
  26. 26.

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Physics & Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations