Skip to main content

Advertisement

Log in

Influence of aging temperature, time, and environment on thermo-oxidative behavior of PMR-15: nanomechanical characterization

  • Stretching the Endurance Boundary of Composite Materials: Pushing the Performance Limit of Composite Structures
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of PMR-15 resin specimens were isothermally aged at 288, 316, and 343 °C over a range of time. For PMR-15 aged at 288 °C, the samples were also subjected to different aging environments including: ambient air, dry air, inert (argon), and pressurized air (0.414 MPa). Nanoindentation was performed to characterize localized mechanical properties as well as the development and growth of the oxidative layer. The measured increase in stiffness in the specimen surface oxidation layer is a manifestation of the chemical changes in the polymer occurring during oxidation. The average elastic modulus in the oxidized region is relatively insensitive to variations in aging temperature, time, and the environments. The thickness of the oxidative layer is observed to increase in the early stages of oxidation and the oxidation process eventually approaches an auto-retardation state. Aging under elevated pressure increases the thickness growth rate of the oxidation layer, while there is no significant difference in growth rate for specimens aged in dry air versus those aged in ambient air. It is shown that the measured average thickness of the oxidation layer and the transition region determined by the nanoindenter is in good agreement with optical microscopy measurements for all conditions considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bowles KJ, Papadopoulos DS, Inghram LL, McCorkle LS, Klan OV (2001) NASA/TM-2001-210602

  2. Tsuji LC, McManus HL, Bowles KJ (1998) NASA Technical Report -208487:1

  3. Régnier N, Berriot J, Lafontaine E, Mortaigne B (2001) Polym Degrad Stab 73:485

    Article  Google Scholar 

  4. Meadors MA, Lowell CE, Cavano PJ, Herrera-Fierro P (1996) High Perform Polym 8:363

    Article  Google Scholar 

  5. Xie W, Pan WP, Chuang KC (2001) Thermochim Acta 367–368:143

    Article  Google Scholar 

  6. Dole P, Chauchard J (1995) Polym Degrad Stab 47:441

    Article  CAS  Google Scholar 

  7. Briscoe BJ, Fiori L, Pelillo E (1998) J Phys D Appl Phys 31:2395

    Article  CAS  Google Scholar 

  8. Raghavan D, Gu X, Nguyen T, VanLandingham M, Karim A (2000) Macromolecules 33:2573

    Article  CAS  Google Scholar 

  9. Gillen KT, Clough RL, Quintana CA (1987) Polym Degrad Stab 17:31

    Article  CAS  Google Scholar 

  10. Gregory JR, Spearing SM (2005) Compos Sci Technol 65:595

    Article  CAS  Google Scholar 

  11. Parvatareddy H, Wang JZ, Lesko JJ, Dillard DA, Reifsnider KL (1996) J Compos Mater 30(2):210

    Article  CAS  Google Scholar 

  12. Gillen KT, Terrill ER, Winter RM (2001) Rubber Chem Technol 74(3):428

    Article  CAS  Google Scholar 

  13. Oliver WC, Pharr GM (1992) J Mater Res 7(6):1564

    Article  CAS  Google Scholar 

  14. Pharr GM, Bolshakov A (2002) J Mater Res 17(10):2660

    Article  CAS  Google Scholar 

  15. Hay JL, Pharr GM (2000) ASM handbook. ASM International, Materials Park, p 232

  16. Pharr GM (1998) Mater Sci Eng A253:151

    Article  CAS  Google Scholar 

  17. Johnson LL, Eby RK, Meador MAB (2003) Polymer 44:187

    Article  CAS  Google Scholar 

  18. Ripberger E, Tandon GP, Schoeppner GA (2004) In: Proceedings of the SAMPE 2004 symposium/exhibition, Long Beach, CA, 16–20 May

  19. Putthanarat S, Tandon GP, Schoeppner GA (2007) Polym Degrad Stab 92:2110

    Article  CAS  Google Scholar 

  20. Tandon GP, Pochiraju KV, Schoeppner GA (2006) Polym Degrad Stab 91(8):1861

    Article  CAS  Google Scholar 

  21. Schoeppner GA, Tandon GP, Pochiraju KV (2007) In: Kwon Y, Allen D, Talreja, R (eds) Multiscale modeling and simulation of composite materials and structures. Springer, New York

  22. Oliver WC, Pharr GM (2004) J Mater Res 19(1):3

    Article  CAS  Google Scholar 

  23. McElhaney KW, Vlassak JJ, Nix WD (1998) J Mater Res 13(5):1300

    Article  CAS  Google Scholar 

  24. Li X, Bhushan B (2002) Mater Charact 48:11

    Article  CAS  Google Scholar 

  25. Mencik M, Swain MV (1995) J Mater Res 10(6):1491

    Article  CAS  Google Scholar 

  26. Thorp KE (2000) PhD Dissertation, University of Dayton, Dayton

Download references

Acknowledgements

This work is supported by the Air Force Office of Scientific Research under the Materials Engineering for Affordable New Systems (MEANS-II) program sponsored by Dr. Charles Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Schoeppner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putthanarat, S., Tandon, G.P. & Schoeppner, G.A. Influence of aging temperature, time, and environment on thermo-oxidative behavior of PMR-15: nanomechanical characterization. J Mater Sci 43, 6714–6723 (2008). https://doi.org/10.1007/s10853-008-2800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2800-1

Keywords

Navigation