Skip to main content
Log in

Large-scale electrochemical synthesis of SnO2 nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tin oxide nanoparticles were synthesized by electrochemical oxidation of a tin metal sheet in a non-aqueous electrolyte containing NH4F. The as-prepared nanoparticles were then thermally annealed at 700 °C for 6 h. The resulting particles were characterized by a variety of experimental techniques, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Raman, UV-visible, and photoluminescence (PL) spectroscopy. The XRD patterns clearly showed that the amorphous phase of the as-synthesized SnO2 particles was transformed into a rutile-type crystalline structure after thermal treatment; and from the line broadening of the XRD peaks, the average size of the annealed particles was found to be 15.4, 12.5, 11.8 nm for the particles initially synthesized at 20, 30, and 40 V, respectively. Consistent results were also observed in HRTEM measurements which showed clear crystalline lattice fringes of the calcined nanoparticles, as compared to the featureless profiles of the as-produced counterparts. In Raman spectroscopic studies, three dominant peaks were observed at 480, 640, and 780 cm−1 which were ascribed to the E1g, A1g, and B2g Raman active vibration modes, respectively, and the wavenumbers of these peaks blue-shifted with decreasing particle size. Additionally, a broad strong emission band was observed in room-temperature photoluminescence measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferrere S, Zaban A, Gregg BA (1997) J Phys Chem B 101:4490. doi:https://doi.org/10.1021/jp970683d

    Article  CAS  Google Scholar 

  2. Wang Y, Lee JY, Zeng HC (2005) Chem Mater 17:3899. doi:https://doi.org/10.1021/cm050724f

    Article  CAS  Google Scholar 

  3. Wang Y, Zeng HC, Lee JY (2006) Adv Mater 18:645. doi:https://doi.org/10.1002/adma.200501883

    Article  CAS  Google Scholar 

  4. Stampfl SR, Chen Y, Dumesic JA, Niu CM, Hill CG (1987) J Catal 105:445. doi:https://doi.org/10.1016/0021-9517(87)90072-8

    Article  CAS  Google Scholar 

  5. Zhang Y, Kolmakov A, Lilach Y, Moskovits M (2005) J Phys Chem B 109:1923. doi:https://doi.org/10.1021/jp045509l

    Article  CAS  Google Scholar 

  6. Nicholas CP, Marks TJ (2004) Nano Lett 4:1557. doi:https://doi.org/10.1021/nl049255r

    Article  CAS  Google Scholar 

  7. Wang YL, Jiang XC, Xia YN (2003) J Am Chem Soc 125:16176. doi:https://doi.org/10.1021/ja037743f

    Article  CAS  Google Scholar 

  8. Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Appl Phys Lett 81:1869. doi:https://doi.org/10.1063/1.1504867

    Article  CAS  Google Scholar 

  9. Kolmakov A, Zhang YX, Cheng GS, Moskovits M (2003) Adv Mater 15:997. doi:https://doi.org/10.1002/adma.200304889

    Article  CAS  Google Scholar 

  10. Law M, Kind H, Messer B, Kim F, Yang PD (2002) Angew Chem Int Ed 41:2405. doi:10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3

    Article  CAS  Google Scholar 

  11. Huang J, Matsunaga N, Shimanoe K, Yamazoe N, Kunitake T (2005) Chem Mater 17:3513. doi:https://doi.org/10.1021/cm047819m

    Article  CAS  Google Scholar 

  12. Akari S, Friemelt K, Glockler K, Luxsteiner MC, Bucher E, Dransfeld K (1993) Appl Phys A Mater Sci Process 57:221

    Article  Google Scholar 

  13. Tatsuyama C, Ichimura S (1976) Jpn J Appl Phys 15:843. doi:https://doi.org/10.1143/JJAP.15.843

    Article  CAS  Google Scholar 

  14. Cheng Y, Xiong P, Fields L, Zheng JP, Yang RS, Wang ZL (2006) Appl Phys Lett 89:093114. doi:https://doi.org/10.1063/1.2338754

    Article  CAS  Google Scholar 

  15. Yang YY, Pradhan S, Chen SW (2004) J Am Chem Soc 126:76. doi:https://doi.org/10.1021/ja037675x

    Article  CAS  Google Scholar 

  16. Leite ER, Weber IT, Longo E, Varela JA (2000) Adv Mater 12:965. doi:10.1002/1521-4095(200006)12:13<965::AID-ADMA965>3.0.CO;2-7

    Article  CAS  Google Scholar 

  17. Pang GS, Chen SG, Koltypin Y, Zaban A, Feng SH, Gedanken A (2001) Nano Lett 1:723. doi:https://doi.org/10.1021/nl0156181

    Article  CAS  Google Scholar 

  18. Juttukonda V, Paddock RL, Raymond JE, Denomme D, Richardson AE, Slusher LE et al (2006) J Am Chem Soc 128:420. doi:https://doi.org/10.1021/ja056902n

    Article  CAS  Google Scholar 

  19. Jiang LH, Sun GQ, Zhou ZH, Sun SG, Wang Q, Yan SY et al (2005) J Phys Chem B 109:8774. doi:https://doi.org/10.1021/jp050334g

    Article  CAS  Google Scholar 

  20. Xu CK, Xu GD, Liu YK, Zhao XL, Wang GH (2002) Scr Mater 46:789. doi:https://doi.org/10.1016/S1359-6462(02)00077-5

    Article  CAS  Google Scholar 

  21. Vayssieres L, Graetzel M (2004) Angew Chem Int Ed 43:3666. doi:https://doi.org/10.1002/anie.200454000

    Article  CAS  Google Scholar 

  22. Liu YK, Zheng CL, Wang WZ, Yin CR, Wang GH (2001) Adv Mater 13:1883. doi:10.1002/1521-4095(200112)13:24<1883::AID-ADMA1883>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  23. Wang WZ, Xu CK, Wang GH, Liu YK, Zheng CL (2002) J Appl Phys 92:2740. doi:https://doi.org/10.1063/1.1497718

    Article  CAS  Google Scholar 

  24. Duan JH, Yang SG, Liu HW, Gong JF, Huang HB, Zhao XN et al (2005) J Am Chem Soc 127:6180. doi:https://doi.org/10.1021/ja042748d

    Article  CAS  Google Scholar 

  25. Ding ZF, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Science 296:1293. doi:https://doi.org/10.1126/science.1069336

    Article  CAS  Google Scholar 

  26. Lou XW, Wang Y, Yuan CL, Lee JY, Archer LA (2006) Adv Mater 18:2325. doi:https://doi.org/10.1002/adma.200600733

    Article  CAS  Google Scholar 

  27. Yu JG, Guo HT, Davis SA, Mann S (2006) Adv Funct Mater 16:2035. doi:https://doi.org/10.1002/adfm.200600552

    Article  CAS  Google Scholar 

  28. Zhu W, Wang WZ, Xu HL, Shi JL (2006) Mater Chem Phys 99:127. doi:https://doi.org/10.1016/j.matchemphys.2005.10.002

    Article  CAS  Google Scholar 

  29. Xie J, Varadan VK (2005) Mater Chem Phys 91:274. doi:https://doi.org/10.1016/j.matchemphys.2004.11.033

    Article  CAS  Google Scholar 

  30. Duan XF, Lieber CM (2000) Adv Mater 12:298. doi:10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  31. Morales AM, Lieber CM (1998) Science 279:208. doi:https://doi.org/10.1126/science.279.5348.208

    Article  CAS  Google Scholar 

  32. Wang B, Yang YH, Wang CX, Xu NS, Yang GW (2005) J Appl Phys 98:124303

    Article  CAS  Google Scholar 

  33. Dai ZR, Gole JL, Stout JD, Wang ZL (2002) J Phys Chem B 106:1274. doi:https://doi.org/10.1021/jp013214r

    Article  CAS  Google Scholar 

  34. Liu Y, Dong H, Liu ML (2004) Adv Mater 16:353. doi:https://doi.org/10.1002/adma.200306104

    Article  CAS  Google Scholar 

  35. Mukhamedshina DM, Beisenkhanov NB, Mit KA, Valitova IV, Botvin VA (2005) High Temp Mater Process 9:307. doi:https://doi.org/10.1615/HighTempMatProc.v9.i2.130

    Article  Google Scholar 

  36. Minami T, Nanto H, Takata S (1988) Jpn J Appl Phys Part 2 Lett 27:L287

    Article  CAS  Google Scholar 

  37. Ye CH, Fang XS, Wang YH, Xie TW, Zhao AW, Zhang LD (2004) Chem Lett 33:54. doi:https://doi.org/10.1246/cl.2004.54

    Article  CAS  Google Scholar 

  38. Han WQ, Zettl A (2003) Nano Lett 3:681. doi:https://doi.org/10.1021/nl034142d

    Article  CAS  Google Scholar 

  39. Zhu HL, Yang DR, Yu GX, Zhang H, Yao KH (2006) Nanotechnology 17:2386. doi:https://doi.org/10.1088/0957-4484/17/9/052

    Article  CAS  Google Scholar 

  40. Reetz MT, Helbig W (1994) J Am Chem Soc 116:7401. doi:https://doi.org/10.1021/ja00095a051

    Article  CAS  Google Scholar 

  41. Reetz MT, Helbig W, Quaiser SA (1995) Chem Mater 7:2227. doi:https://doi.org/10.1021/cm00060a004

    Article  CAS  Google Scholar 

  42. Talapin DV, Murray CB (2005) Science 310:86. doi:https://doi.org/10.1126/science.1116703

    Article  CAS  Google Scholar 

  43. Dierstein A, Natter H, Meyer F, Stephan HO, Kropf C, Hempelmann R (2001) Scr Mater 44:2209. doi:https://doi.org/10.1016/S1359-6462(01)00906-X

    Article  CAS  Google Scholar 

  44. Kamada K, Mukai M, Matsumoto Y (2002) Electrochim Acta 47:3309. doi:https://doi.org/10.1016/S0013-4686(02)00251-7

    Article  CAS  Google Scholar 

  45. Ruan CM, Paulose M, Varghese OK, Mor GK, Grimes CA (2005) J Phys Chem B 109:15754. doi:https://doi.org/10.1021/jp052736u

    Article  CAS  Google Scholar 

  46. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK et al (2006) J Phys Chem B 110:16179. doi:https://doi.org/10.1021/jp064020k

    Article  CAS  Google Scholar 

  47. Tsuchiya H, Macak JM, Taveira L, Balaur E, Ghicov A, Sirotna K et al (2005) Electrochem Commun 7:576. doi:https://doi.org/10.1016/j.elecom.2005.04.008

    Article  CAS  Google Scholar 

  48. Yusta FJ, Hitchman ML, Shamlian SH (1997) J Mater Chem 7:1421. doi:https://doi.org/10.1039/a608525c

    Article  CAS  Google Scholar 

  49. Maestre D, Ramirez-Castellanos J, Hidalgo P, Cremades A, Gonzalez-Calbet JM, Piqueras J (2007) Eur J Inorg Chem 1544. doi:https://doi.org/10.1002/ejic.200600990

    Article  CAS  Google Scholar 

  50. Porto SPS, Fleury PA, Damen TC (1967) Phys Rev 154:522. doi:https://doi.org/10.1103/PhysRev.154.522

    Article  CAS  Google Scholar 

  51. Trayler JG, Smith HG, Nicklow RM, Wilkinson MK (1971) Phys Rev B 3:3457. doi:https://doi.org/10.1103/PhysRevB.3.3457

    Article  Google Scholar 

  52. Rumyantseva MN, Gaskov AM, Rosman N, Pagnier T, Morante JR (2005) Chem Mater 17:893. doi:https://doi.org/10.1021/cm0490470

    Article  CAS  Google Scholar 

  53. Sun SH, Meng GW, Zhang GX, Gao T, Geng BY, Zhang LD et al (2003) Chem Phys Lett 376:103. doi:https://doi.org/10.1016/S0009-2614(03)00965-5

    Article  CAS  Google Scholar 

  54. Peercy PS, Morosin B (1973) Phys Rev B 7:2779. doi:https://doi.org/10.1103/PhysRevB.7.2779

    Article  CAS  Google Scholar 

  55. Parker JC, Siegel RW (1990) Appl Phys Lett 57:943. doi:https://doi.org/10.1063/1.104274

    Article  CAS  Google Scholar 

  56. Aita CR (2007) Appl Phys Lett 90:213112. doi:https://doi.org/10.1063/1.2742914

    Article  CAS  Google Scholar 

  57. Abello L, Bochu B, Gaskov A, Koudryavtseva S, Lucazeau G, Roumyantseva M (1998) J Solid State Chem 135:78. doi:https://doi.org/10.1006/jssc.1997.7596

    Article  CAS  Google Scholar 

  58. Dieguez A, Romano-Rodriguez A, Vila A, Morante JR (2001) J Appl Phys 90:1550. doi:https://doi.org/10.1063/1.1385573

    Article  CAS  Google Scholar 

  59. Cheng B, Russell JM, Shi WS, Zhang L, Samulski ET (2004) J Am Chem Soc 126:5972. doi:https://doi.org/10.1021/ja0493244

    Article  CAS  Google Scholar 

  60. Hu JQ, Bando Y, Liu QL, Golberg D (2003) Adv Funct Mater 13:493. doi:https://doi.org/10.1002/adfm.200304327

    Article  CAS  Google Scholar 

  61. Jeong J, Choi SP, Chang CI, Shin DC, Park JS, Lee BT et al (2003) Solid State Commun 127:595. doi:https://doi.org/10.1016/S0038-1098(03)00614-8

    Article  CAS  Google Scholar 

  62. Yu D, Wang CJ, Wehrenberg BL, Guyot-Sionnest P (2004) Phys Rev Lett 92:216802. doi:https://doi.org/10.1103/PhysRevLett.92.216802

    Article  CAS  Google Scholar 

  63. Wang B, Yang YH, Wang CX, Yang GW (2005) Chem Phys Lett 407:347. doi:https://doi.org/10.1016/j.cplett.2005.03.119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation (CHE-0718170 and DMR-0804049). The powder X-ray diffraction data in this work were recorded on an instrument supported by the NSF Major Research Instrumentation (MRI) Program under Grant No. CHE-0521569. We thank the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory for use of its facilities. We also thank Prof. J. Z. Zhang, T. Olson and R. Newhouse (UCSC) for access to the Raman spectrometer, and Prof. S. Oliver and D. Rogow (UCSC) for assistance in XRD data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Ghosh, D. & Chen, S. Large-scale electrochemical synthesis of SnO2 nanoparticles. J Mater Sci 43, 5291–5299 (2008). https://doi.org/10.1007/s10853-008-2792-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2792-x

Keywords

Navigation