Journal of Materials Science

, Volume 43, Issue 15, pp 5274–5281 | Cite as

Effect of the diisocyanate and chain extenders on the properties of the cross-linked polyetherurethane elastomers

  • S. OpreaEmail author


Polyurethane elastomers with potential for applications in damping bearings were synthesized with 1,6-hexamethylene diisocyanate, 4,4′-methylenebis-(phenylisocyanate), poly(1,4-butane)diols (Terathane 1400), 1,4-butane diol 1,6-hexane diol and glycerin chain extenders. The glass-transition temperatures of the materials ranged from −42 to −75 °C and were higher for polymers based on 4,4′-methylenebis-(phenylisocyanate) and with higher hard segment (HS) contents. The tensile strengths of the materials were 20–55 MPa and the tensile moduli were 30–134 MPa. These increased with increasing HS content. Interchain cross-linking improves thermal stability, which was measured by thermogravimetric analysis and differential scanning calorimetry. The structure and amount of HS used causes a significant variation in the properties of cross-linked elastomers.


Hard Segment Soft Segment Chain Extender Phenylisocyanate Hard Segment Content 



We acknowledge the financial support of this work by the Ministry of Education and Research, CEEX Program—Grant no. X2C29.


  1. 1.
    Kim BK, Lee SY (1996) Polymer (Guildf) 37:5781. doi: CrossRefGoogle Scholar
  2. 2.
    Nashif AD, Jones DI, Henderson JP (1985) Vibration damping. Wiley, New YorkGoogle Scholar
  3. 3.
    Chun BC, Cho TK, Chong MH, Chung YC (2007) J Mater Sci 42:9045. doi: CrossRefGoogle Scholar
  4. 4.
    Kim KR, An JH, Cho KW, Park CE (1993) J Appl Polym Sci 47:305. doi: CrossRefGoogle Scholar
  5. 5.
    Peng W, Li S (1995) J Appl Polym Sci 58:967. doi: CrossRefGoogle Scholar
  6. 6.
    Yu X, Gao G, Wang J, Li F, Tang X (1999) Polym Int 48:805. doi:10.1002/(SICI)1097-0126(199909)48:9<805::AID-PI197>3.0.CO;2-8CrossRefGoogle Scholar
  7. 7.
    Patri M, Samui A, Deb PC (1993) J Appl Polym Sci 48:1709. doi: CrossRefGoogle Scholar
  8. 8.
    Tung CJ, Hsu TC (1992) J Appl Polym Sci 46:1759. doi: CrossRefGoogle Scholar
  9. 9.
    Fay JJ, Murphy CJ, Thomas DA, Sperling LH (1991) Polym Eng Sci 31:1731. doi: CrossRefGoogle Scholar
  10. 10.
    Chen Q, Ge H, Chen D, He M, Yu X (1994) J Appl Polym Sci 54:1191. doi: CrossRefGoogle Scholar
  11. 11.
    Hourston D, Schäfer F-U (1996) J Appl Polym Sci 62:2025. doi:10.1002/(SICI)1097-4628(19961219)62:12<2025::AID-APP6>3.0.CO;2-JCrossRefGoogle Scholar
  12. 12.
    Hu R, Dimonie VL, El-Aasser MS, Pearson RA, Hiltner A, Mylonakis SG, Sperling LH (1997) J Polym Sci B Polym Phys 35:1501CrossRefGoogle Scholar
  13. 13.
    Chern YC, Tseng SM, Hsieh KH (1999) J Appl Polym Sci 74:335. doi:10.1002/(SICI)1097-4628(19991010)74:2<328::AID-APP14>3.0.CO;2-WCrossRefGoogle Scholar
  14. 14.
    Urayama K, Yokoyama K, Kohjiya S (2000) Polymer (Guildf) 41:3273. doi: CrossRefGoogle Scholar
  15. 15.
    Oprea S, Vlad S (2006) J Optoelectron Adv Mater 8:675Google Scholar
  16. 16.
    Oprea S (2002) Polym Degrad Stab 75:9. doi: CrossRefGoogle Scholar
  17. 17.
    Hatakeyama H, Izuta Y, Kobashigawa K, Hirose S, Hatakeyama I (1998) Macromol Symp 130:127CrossRefGoogle Scholar
  18. 18.
    Oprea S, Vlad S, Stanciu A (2001) Polymer 42:7257CrossRefGoogle Scholar
  19. 19.
    Bhowmick AK (1986) J Mater Sci 21:3927CrossRefGoogle Scholar
  20. 20.
    Hudgins RG (2006) Polym Eng Sci 46:919CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations