Skip to main content
Log in

Quasi-static and dynamic mechanical properties of commercial-purity tungsten processed by ECAE at low temperatures

  • Ultrafine-Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we have processed commercial purity tungsten (W) via different routes of equal-channel angular extrusion (ECAE) at temperatures as low as 600 °C. We have systematically evaluated the quasi-static and dynamic compressive behaviors of the processed W. Quasi-static compression tests were performed using an MTS hydro-servo system at room temperature. It is observed that samples ECAE processed at 800 °C show higher yield and flow stresses than those processed at other temperatures; no obvious strain hardening is observed in the quasi-static stress–strain curves. Quasi-static strain rate jump tests show that the strain rate sensitivity of ECAE W is in the range of 0.02 to 0.03, smaller than that of coarse-grained W. Uni-axial dynamic compressive tests were performed using the Kolsky bar (or split-Hopkinson pressure bar, SHPB) system. Post-loading SEM observations revealed that under dynamic compression, the competition between cracking at pre-existing extrinsic surface defects, grain boundaries, and uniform plastic deformation of the individual grains control the overall plastic deformation of the ECAE W. The existence of flow softening under dynamic loading has been established for all of the ECAE W specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Krasko GL (1993–1994) Int J Refract Met Hard Mater 12:251

    Article  CAS  Google Scholar 

  2. Dummer T, Lasalvia JC, Ravichandran G, Meyers MA (1998) Acta Mater 46:6267. doi:https://doi.org/10.1016/S1359-6454(98)00255-9

    Article  CAS  Google Scholar 

  3. Lennon AM, Ramesh KT (2000) Mater Sci Eng A 276:9. doi:https://doi.org/10.1016/S0921-5093(99)00517-1

    Article  Google Scholar 

  4. Wei Q, Jiao T, Ramesh KT, Ma E, Kecskes LJ, Magness L et al (2006) Acta Mater 54:77. doi:https://doi.org/10.1016/j.actamat.2005.08.031

    CAS  Google Scholar 

  5. Kecskes LJ, Cho KC, Dowding RJ, Schuster BE, Valiev RZ, Wei Q (2007) Mater Sci Eng A 467:33. doi:https://doi.org/10.1016/j.msea.2007.02.099

    Article  Google Scholar 

  6. Lu K (2008) Int Mater Rev 53:21. doi:https://doi.org/10.1179/174328008X254358

    Article  CAS  Google Scholar 

  7. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer M, Zhu YT (2006) JOM-US 58:33

    Article  Google Scholar 

  8. Wei Q, Ramesh KT, Kecskes LJ, Mathaudhu SN, Hartwig KT (2008) Mater Sci Forum 579:75

    Article  CAS  Google Scholar 

  9. Bechtold JH (1956) J Met Trans AIME 206:142

    Google Scholar 

  10. Farrell K, Schaffhauser AC, Stiegler JO (1967) J Less Common Met 13:141. doi:https://doi.org/10.1016/0022-5088(67)90177-4

    Article  CAS  Google Scholar 

  11. Wei Q, Zhang H, Schuster BE, Ramesh KT, Valiev RZ, Kecskes LJ et al (2006) Acta Mater 54:4079. doi:https://doi.org/10.1016/j.actamat.2006.05.005

    Article  CAS  Google Scholar 

  12. Wei Q, Ramesh KT, Ma E, Kesckes LJ, Dowding RJ, Kazykhanov VU et al (2005) Appl Phys Lett 86:101907. doi:https://doi.org/10.1063/1.1875754

    Article  Google Scholar 

  13. Barber RE, Dudo T, Yasskin PB, Hartwig KT (2004) Scripta Mater 51:373. doi:https://doi.org/10.1016/j.scriptamat.2004.05.022

    Article  CAS  Google Scholar 

  14. Follansbee PS (1985) In ASM metals handbook. American Society of Metals. p 190

  15. Hall EO (1951) P Phys Soc B 64:747

    Article  Google Scholar 

  16. Petch NJ (1953) J Iron Steel I 174:25

    CAS  Google Scholar 

  17. Wei Q (2007) J Mater Sci 42:1709. doi:https://doi.org/10.1007/s10853-006-0700-9

    Article  CAS  Google Scholar 

  18. Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng A 381:71. doi:https://doi.org/10.1016/j.msea.2004.03.064

    Article  Google Scholar 

  19. Wei Q, Kecskes LJ (2008) Mater Sci Eng A. doi:https://doi.org/10.1016/j.msea.2008.01.013

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the U.S. Army Research Laboratory under contract # W911QX-06-C-0124. The authors would like to thank Ms. Xueran Liu (University of North Carolina at Charlotte) for assistance with SEM operations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Z., Guo, Y.Z., Mathaudhu, S.N. et al. Quasi-static and dynamic mechanical properties of commercial-purity tungsten processed by ECAE at low temperatures. J Mater Sci 43, 7379–7384 (2008). https://doi.org/10.1007/s10853-008-2788-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2788-6

Keywords

Navigation