Skip to main content

Advertisement

Log in

Effects of environment on creep behavior of two oxide/oxide ceramic–matrix composites at 1200 °C

  • Stretching the Endurance Boundary of Composite Materials: Pushing the Performance Limit of Composite Structures
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile creep behavior of two oxide/oxide ceramic–matrix composites (CMCs) was investigated at 1200 °C in laboratory air, in steam, and in argon. The composites consist of a porous oxide matrix reinforced with laminated, woven mullite/alumina (Nextel™720) fibers, have no interface between the fiber and matrix, and rely on the porous matrix for flaw tolerance. The matrix materials were alumina and aluminosilicate. The tensile stress–strain behavior was investigated and the tensile properties were measured at 1200 °C. Tensile creep behavior of both CMCs was examined for creep stresses in the 80–150 MPa range. Creep run-out defined as 100 h at creep stress was achieved in air and in argon for stress levels ≤100 MPa for both composites. The retained strength and modulus of all specimens that achieved run-out were evaluated. The presence of steam accelerated creep rates and reduced creep life of both CMCs. In the case of the composite with the aluminosilicate matrix, no-load exposure in steam at 1200 °C caused severe degradation of tensile strength. Composite microstructure, as well as damage and failure mechanisms were investigated. Poor creep performance of both composites in steam is attributed to the degradation of the fibers and densification of the matrix. Results indicate that the aluminosilicate matrix is considerably more susceptible to densification and coarsening of the porosity than the alumina matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ohnabe H, Masaki S, Onozuka M, Miyahara K, Sasa T (1999) Composites Part A 30:489

    Article  Google Scholar 

  2. Zawada LP, Staehler J, Steel S (2003) J Am Ceram Soc 86(8):1282

    Article  CAS  Google Scholar 

  3. Parlier M, Ritti MH (2003) Aerospace Sci Technol 7:211

    Article  CAS  Google Scholar 

  4. Mattoni MA, Yang JY, Levi CG, Zok FW, Zawada LP (2005) Int J Appl Ceram Technol 2(2):133

    Article  CAS  Google Scholar 

  5. Parthasarathy TA, Zawada LP, John R, Cinibulk MK, Zelina J (2005) Int J Appl Ceram Technol 2(2):122

    Article  CAS  Google Scholar 

  6. Szweda A, Millard ML, Harrison MG (1997) Fiber-reinforced ceramic-matrix composite member and method for making. US Patent 5,601,674

  7. Sim SM, Kerans RJ (1992) Ceram Eng Sci Proc 13(9–10):632

    CAS  Google Scholar 

  8. Moore EH, Mah T, Keller KA (1994) Ceram Eng Sci Proc 15(4):113

    Article  Google Scholar 

  9. Lange FF, Tu WC, Evans AG (1995) Mater Sci Eng A 195:145

    Article  Google Scholar 

  10. Mouchon E, Colomban P (1995) Composites 26:175

    Article  CAS  Google Scholar 

  11. Tu WC, Lange FF, Evans AG (1996) J Am Ceram Soc 79(2):417

    Article  CAS  Google Scholar 

  12. Evans AG, Zok FW (1994) J Mater Sci 29:3857

    Article  CAS  Google Scholar 

  13. Kerans RJ, Parthasarathy TA (1999) Composites Part A 30:521

    Article  Google Scholar 

  14. Kerans RJ, Hay RS, Parthasarathy TA, Cinibulk MK (2002) J Am Ceram Soc 85(11):2599

    Article  CAS  Google Scholar 

  15. Levi CG, Yang JY, Dalgleish BJ, Zok FW, Evans AG (1998) J Am Ceram Soc 81:2077

    Article  CAS  Google Scholar 

  16. Hegedus AG (1991) Ceramic bodies of controlled porosity and process for making same. U.S. Patent 5,0177,522

  17. Lu TJ (1996) J Am Ceram Soc 79:266

    Article  CAS  Google Scholar 

  18. Zok FW, Levi CG (2001) Adv Eng Mater 3(1–2):15

    Article  Google Scholar 

  19. Zok FW (2006) J Am Ceram Soc 89(11):3309

    Article  CAS  Google Scholar 

  20. Lee SS, Zawada LP, Staehler J, Folsom CA (1998) J Am Ceram Soc 81(7):1797

    Article  CAS  Google Scholar 

  21. Zawada LP, Hay RS, Lee SS, Staehler J (2003) J Am Ceram Soc 86(6):981

    Article  CAS  Google Scholar 

  22. Ruggles-Wrenn MB, Mall S, Eber CA, Harlan LB (2006) Composites Part A 37(11):2029

    Article  Google Scholar 

  23. Jurf RA, Butner SC (1999) Trans ASME J Eng Gas Turbines Power 122(2):202

    Article  Google Scholar 

  24. Staehler JM, Zawada LM (2000) J Am Ceram Soc 83(7):1727

    Article  CAS  Google Scholar 

  25. Szymczak N (2007) MS Thesis. Air Force Institute of Technology, WPAFB, OH

  26. Charles RJ, Hillig WB (1962) In: Symposium on mechanical strength of glass and ways of improving it. Union Scientifique Continentale du Verre, Belgium, p 511

  27. Charles RJ, Hillig WB (1965) In: Zackey VF (ed) High-strength materials. Wiley, New York, p 682

  28. Wiederhorn SM (1967) J Am Ceram Soc 50(8):407

    Article  CAS  Google Scholar 

  29. Wiederhorn SM, Bolz LH (1970) J Am Ceram Soc 53(10):543

    Article  CAS  Google Scholar 

  30. Wiederhorn S (1972) J Am Ceram Soc 55(2):81

    Article  CAS  Google Scholar 

  31. Wiederhorn SM, Freiman SW, Fuller ER, Simmons CJ (1982) J Mater Sci 17:3460

    Article  CAS  Google Scholar 

  32. Michalske TA, Freiman SW (1983) J Am Ceram Soc 66(4):284

    Article  CAS  Google Scholar 

  33. Michalske TA, Bunker BC (1984) J Appl Phys 56(10):2686

    Article  CAS  Google Scholar 

  34. Michalske TA, Bunker BC (1993) J Am Ceram Soc 76(10):2613

    Article  CAS  Google Scholar 

  35. Evans AG, Fuller ER (1974) Metall Trans A 5(1):27

    Google Scholar 

  36. Ruggles-Wrenn MB, Hetrick G, Baek SS (2007) Int J Fatigue, in press

  37. Antti ML, Lara-Curzio E, Warren R (2004) J Eur Ceram Soc 24:565

    Article  CAS  Google Scholar 

  38. Fujita H, Jefferson G, McMeeking RM, Zok FW (2004) J Am Ceram Soc 87(2):261

    Article  CAS  Google Scholar 

  39. Fujita H, Levi CG, Zok FW, Jefferson G (2005) J Am Ceram Soc 88(2):367

    Article  CAS  Google Scholar 

  40. Sherer GW (1998) J Am Ceram Soc 81(1):49

    Article  Google Scholar 

  41. Bordia RK, Jagota A (1993) J Am Ceram Soc 76(10):2475

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Ruggles-Wrenn.

Additional information

The views expressed are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense or the U.S. Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruggles-Wrenn, M.B., Koutsoukos, P. & Baek, S.S. Effects of environment on creep behavior of two oxide/oxide ceramic–matrix composites at 1200 °C. J Mater Sci 43, 6734–6746 (2008). https://doi.org/10.1007/s10853-008-2784-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2784-x

Keywords

Navigation