Skip to main content
Log in

Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interaction of single-cell protein of Spirulina platensis with aqueous AgNO3 and HAuCl4 was investigated for the synthesis of Ag, Au and Au core—Ag shell nanoparticles. Biological reduction and extracellular synthesis of nanoparticles were achieved in 120 h at 37 °C at pH 5.6. The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 424 and 530 nm for Ag and Au nanoparticles, respectively. For bimetallic nanoparticles, absorption peak was observed at 509, 486 and 464 nm at 75:25, 50:50 and 25:75 (Au:Ag) mol concentrations, respectively. High-resolution transmission electron microscopy showed formation of nanoparticles in the range of 7–16 (silver), 6–10 (gold) and 17–25 nm (bimetallic 50:50 ratio). XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. Fourier transform infrared spectroscopic measurements revealed the fact that the protein is the possible biomolecule responsible for the reduction and capping of the biosynthesized nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brust M, Kiely CJ (2002) Colloids Surf A Physicochem Eng Asp 202:175. doi:https://doi.org/10.1016/S0927-7757(01)01087-1

    Article  CAS  Google Scholar 

  2. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarani SK et al (2003) Nanotechnology 14:95. doi:https://doi.org/10.1088/0957-4484/14/1/321

    Article  CAS  Google Scholar 

  3. Huang H, Yang X (2005) Colloids Surf A Physicochem Eng Asp 255:11. doi:https://doi.org/10.1016/j.colsurfa.2004.12.020

    Article  CAS  Google Scholar 

  4. Mandal S, Phadtare S, Sastry M (2005) Curr Appl Phys 5:118. doi:https://doi.org/10.1016/j.cap.2004.06.006

    Article  Google Scholar 

  5. Wang C, Flynn NT, Langer R (2004) Adv Mater 16:1074. doi:https://doi.org/10.1002/adma.200306516

    Article  CAS  Google Scholar 

  6. Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena J, Walton ID et al (2001) Science 294:137. doi:https://doi.org/10.1126/science.294.5540.137

    Article  CAS  Google Scholar 

  7. Han M, Gao X, Su JZ, Nie S (2001) Nat Biotechnol 19:631. doi:https://doi.org/10.1038/90228

    Article  CAS  Google Scholar 

  8. Joshi HM, Bhumkar DR, Kalpana J, Varsha P, Murali S (2006) Langmuir 22:300. doi:https://doi.org/10.1021/la051982u

    Article  CAS  Google Scholar 

  9. Zhilong Shi, Neoh KG, Kang ET (2004) Langmuir 20:6847. doi:https://doi.org/10.1021/la049132m

    Article  CAS  Google Scholar 

  10. Elechiguerra JL, Burt JL, Morones RJ, Camacho A, Gao X, Lara HH et al (2005) Nanobiotechnol 3:1. doi:https://doi.org/10.1186/1477-3155-3-1

    Article  CAS  Google Scholar 

  11. Taton TA, Mirkin CA, Letsinger RL (2000) Science 289:1757. doi:https://doi.org/10.1126/science.289.5485.1757

    Article  CAS  Google Scholar 

  12. Cao YC, Jin R, Mirkin CA (2002) Science 297:1536. doi:https://doi.org/10.1126/science.297.5586.1536

    Article  CAS  Google Scholar 

  13. Sandhu KK, McIntosh CM, Simard JM, Smith SW, Rotello VM (2002) Bioconjugate Chem B 13:3. doi:https://doi.org/10.1021/bc015545c

    Article  CAS  Google Scholar 

  14. Gericke M, Pinches A (2006) Hydrometallurgy 83:132. doi:https://doi.org/10.1016/j.hydromet.2006.03.019

    Article  CAS  Google Scholar 

  15. Mandal D, Bolander ME, Mukhopadhyay C, Sarkar G, Mukherjee P (2006) Appl Microbiol Biotechnol 69:485. doi:https://doi.org/10.1007/s00253-005-0179-3

    Article  CAS  Google Scholar 

  16. Mann S (1993) Nature 365:499. doi:https://doi.org/10.1038/365499a0

    Article  CAS  Google Scholar 

  17. Oliver S, Kuperman A, Coombs N, Lough A, Ozin GA (1995) Nature 378:47. doi:https://doi.org/10.1038/378047a0

    Article  CAS  Google Scholar 

  18. Kroger N, Deutzmann R, Sumper M (1999) Science 286:1129. doi:https://doi.org/10.1126/science.286.5442.1129

    Article  CAS  Google Scholar 

  19. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Nat Mater 3:482. doi:https://doi.org/10.1038/nmat1152

    Article  CAS  Google Scholar 

  20. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) J Mater Chem 13:1822. doi:https://doi.org/10.1039/b303808b

    Article  CAS  Google Scholar 

  21. Shiv SS, Rai A, Ahmad A, Sastry M (2004) J Colloid Interface Sci 275:496. doi:https://doi.org/10.1016/j.jcis.2004.03.003

    Article  CAS  Google Scholar 

  22. Shiv SS, Ahmed A, Sastry M (2003) Biotechnol Prog 19:1627. doi:https://doi.org/10.1021/bp034070w

    Article  CAS  Google Scholar 

  23. Prathap CS, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Biotechnol Prog 22:577. doi:https://doi.org/10.1021/bp0501423

    Article  CAS  Google Scholar 

  24. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X et al (2007) Nanotechnology 18:105104. doi:https://doi.org/10.1088/0957-4484/18/10/105104

    Article  CAS  Google Scholar 

  25. Scarano G, Morelli E (2003) Plant Sci 165:803. doi:https://doi.org/10.1016/S0168-9452(03)00274-7

    Article  CAS  Google Scholar 

  26. Konishi Y, Nomura T, Tsukiyama T, Saitoh N (2004) Trans Mater Res Soc Jpn 29:2341

    CAS  Google Scholar 

  27. Singaravelu G, Arockyamary JS, Ganesh Kumar V, Govindaraju K (2007) Colloids Surf B Biointerf 57:97. doi:https://doi.org/10.1016/j.colsurfb.2007.01.010

    Article  CAS  Google Scholar 

  28. Gadd GM (1990) Experientia 46:834. doi:https://doi.org/10.1007/BF01935534

    Article  CAS  Google Scholar 

  29. Kuyucak N, Volesky B, Raton FL (1990) Biosorption of heavy metals. CRC Press, Boca Raton, p 173

    Google Scholar 

  30. Bender J, Gould JP, Vatcharapijiarn Y, Young JS, Phillip S (1994) Water Environ Res 66:679

    Article  CAS  Google Scholar 

  31. Hameed A, Hasnain S (2005) Chin J Oceanol Limnol 23:433. doi:https://doi.org/10.1007/BF02842688

    Article  CAS  Google Scholar 

  32. Gardea-Torresdey JL, Becker-Hapak KM, Hosea JM, Darnell DW (1990) Environ Sci Technol 19:1372. doi:https://doi.org/10.1021/es00079a011

    Article  Google Scholar 

  33. Kaplan D, Christiaen D, Arad SM (1987) Appl Environ Microbiol 53:2953

    Article  CAS  Google Scholar 

  34. Zhang W, Majidi V (1994) Environ Sci Technol 28:1577. doi:https://doi.org/10.1021/es00058a007

    Article  CAS  Google Scholar 

  35. Ayehunie S, Belay A, Baba T, Ruprecht R (1998) J Acq Imm Differ Syn 18:7

    CAS  Google Scholar 

  36. Mulvaney P (1996) Langmuir 12:788. doi:https://doi.org/10.1021/la9502711

    Article  CAS  Google Scholar 

  37. Caruso F, Furlong DN, Ariga K, Ichinose I, Kunitake T (1998) Langmuir 14:4559. doi:https://doi.org/10.1021/la971288h

    Article  CAS  Google Scholar 

  38. Van de Weert M, Haris PI, Hennink WE, Crommelin DJA (2001) Anal Biochem 297:160. doi:https://doi.org/10.1006/abio.2001.5337

    Article  CAS  Google Scholar 

  39. Mohamed ZA (2001) Water Res 35:4405. doi:https://doi.org/10.1016/S0043-1354(01)00160-9

    Article  CAS  Google Scholar 

  40. Philippis RD, Sili C, Paperi R, Vincenzini M (2001) J Appl Phycol 13:293. doi:https://doi.org/10.1023/A:1017590425924

    Article  Google Scholar 

  41. Gardea-Torresdey JL, Aarenas JI, Webb R, Fransisco NMC, Tieman KJ (1997) J Hazard Subst Res 3:1

    Google Scholar 

  42. Gole A, Dash CV, Ramachandran V, Mandale AB, Sainkar SR, Rao M et al (2001) Langmuir 17:1674. doi:https://doi.org/10.1021/la001164w

    Article  CAS  Google Scholar 

  43. Selvakannan PR, Mandal S, Phadtare S, Renu Pasricha, Sastry M (2003) Langmuir 19:3545. doi:https://doi.org/10.1021/la026906v

    Article  CAS  Google Scholar 

  44. Nair B, Pradeep T (2002) Cryst Growth Des 2:293. doi:https://doi.org/10.1021/cg0255164

    Article  CAS  Google Scholar 

  45. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Small 1:517. doi:https://doi.org/10.1002/smll.200400053

    Article  CAS  Google Scholar 

  46. Hu Y, Li C, Gu F, Zhao Y (2007) J Alloy Comp 432:L5. doi:https://doi.org/10.1016/j.jallcom.2006.05.134

    Article  CAS  Google Scholar 

  47. Han SW, Kim Y, Kim K (1998) J Colloid Interface Sci 208:272. doi:https://doi.org/10.1006/jcis.1998.5812

    Article  CAS  Google Scholar 

  48. Macdonald IDG, Smith WE (1996) Langmuir 12:706. doi:https://doi.org/10.1021/la950256w

    Article  CAS  Google Scholar 

  49. Keating CD, Kovaleski KK, Natan MJ (1998) J Phys Chem B 102:9414. doi:https://doi.org/10.1021/jp982724r

    Article  CAS  Google Scholar 

  50. Kumar CV, McLendon GL (1997) Chem Mater 9:863. doi:https://doi.org/10.1021/cm960634y

    Article  CAS  Google Scholar 

  51. Gole A, Dash C, Sainkar SR, Mandale AB, Rao M, Sastry M (2000) Anal Chem 72:1401. doi:https://doi.org/10.1021/ac000099s

    Article  CAS  Google Scholar 

  52. Ahmed A, Mukherjee P, Senapati S, Mandal D, Islam Khan M, Kumar R et al (2003) Colloids Surf B 28:313. doi:https://doi.org/10.1016/S0927-7765(02)00174-1

    Article  CAS  Google Scholar 

  53. Panigrahi S, Kundu S, Ghosh SK, Sudip Nath, Pal T (2005) Colloids Surf A 264:133. doi:https://doi.org/10.1016/j.colsurfa.2005.04.017

    Article  CAS  Google Scholar 

  54. Wang S, Shi G (2007) Mater Chem Phys 102:255. doi:https://doi.org/10.1016/j.matchemphys.2006.12.014

    Article  CAS  Google Scholar 

  55. Schmid G (1994) Clusters and colloids. VCH, Weinheim

    Book  Google Scholar 

  56. Toshima N, Yonezawa (1998) J Chem 11:1179

    Google Scholar 

  57. Malin MP, Murphy CJ (2002) Nano Lett 2:1235. doi:https://doi.org/10.1021/nl025774n

    Article  CAS  Google Scholar 

  58. Ah CS, Hong SD, Jang DJ (2001) J Phys Chem B 105:7871. doi:https://doi.org/10.1021/jp0113578

    Article  CAS  Google Scholar 

  59. Mallik K, Mandal M, Pradhan N, Pal T (2001) Nano Lett 1:319. doi:https://doi.org/10.1021/nl0100264

    Article  CAS  Google Scholar 

  60. Cao YW, Jin R, Mirkin CA (2001) J Am Chem Soc 123:7961. doi:https://doi.org/10.1021/ja011342n

    Article  CAS  Google Scholar 

  61. Caruso F (2001) Adv Mater 13:11. doi :10.1002/1521-4095(200101)13:1≤11::AID-ADMA11≥3.0.CO;2-N

    Article  CAS  Google Scholar 

  62. Schmid G (1992) Chem Rev 92:1709. doi:https://doi.org/10.1021/cr00016a002

    Article  CAS  Google Scholar 

  63. III Aiken JD, Finke RG (1999) J Mol Catal A 145:1. doi:https://doi.org/10.1016/S1381-1169(99)00098-9

    Article  CAS  Google Scholar 

  64. Henglein (1993) J Phys Chem 97:457

    Google Scholar 

  65. Srnova-Sloufova I, Vickova B, Bastl Z, Hasslett TL (2004) Langmuir 20:3407. doi:https://doi.org/10.1021/la0302605

    Article  CAS  Google Scholar 

  66. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  67. Rai A, Chaudhary M, Ahmed A, Bhargava S, Sastry M (2007) Mater Res Bull 42:1212. doi:https://doi.org/10.1016/j.materresbull.2006.10.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.S. and K.G. thank the Department of Science and Technology (DST), New Delhi, Government of India, for financial assistance. The HR-TEM assistance of SAIF, IIT, Chennai, is gratefully acknowledged. The authors thank Prof. L. Kannan, Vice Chancellor, Thiruvalluvar University for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesan Singaravelu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govindaraju, K., Basha, S.K., Kumar, V.G. et al. Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43, 5115–5122 (2008). https://doi.org/10.1007/s10853-008-2745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2745-4

Keywords

Navigation