Skip to main content
Log in

Crack growth in ultrafine-grained AA6063 produced by equal-channel angular pressing

  • Ultrafine-Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Crack growth behaviour of ultrafine-grained AA6063, processed by equal-channel angular pressing (ECAP) via route E at room temperature, was evaluated with special emphasis on the effect of grain size distribution and work hardening. A bimodal, two times ECAPed condition and a monomodal ultrafine-grained condition after eight ECAP passes are compared with the coarse grained peak aged material. Depending on their microstructure, the ECAPed materials show significantly lower fatigue threshold values (ΔKth) and higher crack growth rates (da/dN) than their coarse grained counterparts. Micrographs of the crack propagation surfaces reveal the reduced grain size as major key to increased crack growth rates of the ECAPed material, as it influences roughness-induced crack closure and crack deflections. Furthermore, the effects of other features, such as ductility, work hardening capability and grain boundary characteristics, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi:https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  2. Horita Z, Fujinami T, Nemoto M, Langdon TG (2001) J Mater Process Tech 117:288. doi:https://doi.org/10.1016/S0924-0136(01)00783-X

    Article  CAS  Google Scholar 

  3. Höppel HW, Xu C, Kautz M, Barta-Schreiber N, Langdon TG, Mughrabi H (2004) In: Proc. of Int. Conf. Nanomaterials by Severe plastic deformation-NANOSPD. Wiley-VCH, Weinheim

  4. Mughrabi H, Höppel HW, Kautz M (2004) Scripta Mater 51:807. doi:https://doi.org/10.1016/j.scriptamat.2004.05.012

    Article  CAS  Google Scholar 

  5. Vinogradov A, Washikita K, Kitagawa K, Kopylov VI (2003) Mater Sci Eng A 349:318. doi:https://doi.org/10.1016/S0921-5093(02)00813-4

    Article  Google Scholar 

  6. Patlan V, Vinogradov A, Higashi K, Kitagawa K (2001) Mater Sci Eng A 300:171. doi:https://doi.org/10.1016/S0921-5093(00)01682-8

    Article  Google Scholar 

  7. Vinogradov A, Nagasaki S, Patlan V, Kitagawa K, Kawazoe N (1999) Nanostruct Mater 11:925. doi:https://doi.org/10.1016/S0965-9773(99)00392-X

    Article  CAS  Google Scholar 

  8. Vinogradov A (2007) J Mater Sci 42:1797. doi:https://doi.org/10.1007/s10853-006-0973-z

    Article  CAS  Google Scholar 

  9. Chung CS, Kim JK, Kim HK, Kim WJ (2002) Mater Sci Eng A 337:39. doi:https://doi.org/10.1016/S0921-5093(02)00010-2

    Article  Google Scholar 

  10. Kießling R, Hübner P, Biermann H (2006) Materialprüfung 48:547

    Google Scholar 

  11. Turnbull A, de los Rios ER (1995) Fatigue Fract Eng Mater Struct 18:1355

    Article  CAS  Google Scholar 

  12. Hockauf M, Meyer LW, Halle T, Kuprin C, Hietschold M, Schulze S et al (2006) Int J Mat Res 97:1392

    Article  CAS  Google Scholar 

  13. Barber RE, Dudo T, Yasskin PB, Hartwig KT (2004) Scripta Mater 51:373. doi:https://doi.org/10.1016/j.scriptamat.2004.05.022

    Article  CAS  Google Scholar 

  14. Furukawa M, Horita Z, Langdon TG (2002) Mater Sci Eng A 332:97. doi:https://doi.org/10.1016/S0921-5093(01)01716-6

    Article  Google Scholar 

  15. ASTM Standard E 399–90, American Society for Testing and Materials

  16. Watanabe T (1988) Mater Forum 11:284

    CAS  Google Scholar 

  17. Lim LC, Watanabe T (1990) Acta Metall Mater 38:2507. doi:https://doi.org/10.1016/0956-7151(90)90262-F

    Article  CAS  Google Scholar 

  18. Zhang ZF, Wang ZG (2000) Mater Sci Eng A 284:285. doi:https://doi.org/10.1016/S0921-5093(00)00796-6

    Article  Google Scholar 

  19. Lukas JP, Gerberich WW (1983) Fatigue Fract Eng Mater Struct 6:271

    Article  Google Scholar 

  20. Zhang JZ (2000) Eng Fract Mech 65:665. doi:https://doi.org/10.1016/S0013-7944(99)00148-4

    Article  Google Scholar 

  21. Lynch SP (2007) Mater Sci Eng A 468–470:74. doi:https://doi.org/10.1016/j.msea.2006.09.083

    Article  Google Scholar 

  22. Höppel HW, Kautz M, Xu C, Muraskin M, Langdon TG, Valiev RZ et al (2006) Int J Fatigue 28:1001. doi:https://doi.org/10.1016/j.ijfatigue.2005.08.014

    Article  Google Scholar 

  23. Kim WJ, Wang JY (2007) Mater Sci Eng A 464:23. doi:https://doi.org/10.1016/j.msea.2007.03.074

    Article  Google Scholar 

  24. Hockauf M, Meyer LW, Zillmann B, Hietschold M, Schulze S, Krüger L (in press) Mater Sci Eng A

Download references

Acknowledgements

The authors thank the „Deutsche Forschungsgemeinschaft“ for supporting this research within the framework of „Sonderforschungsbereich 692“.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, L.W., Sommer, K., Halle, T. et al. Crack growth in ultrafine-grained AA6063 produced by equal-channel angular pressing. J Mater Sci 43, 7426–7431 (2008). https://doi.org/10.1007/s10853-008-2725-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2725-8

Keywords

Navigation