Skip to main content
Log in

Simultaneous measurement of normal force and electrical resistance during isothermal crystallization for carbon black filled high-density polyethylene

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The kinetics of isothermal crystallization for high-density polyethylene (HDPE) containing different volume fraction (Φ) of carbon black (CB) have been evaluated by using differential scanning calorimetry (DSC) at 123, 124, and 125 °C where the rate of crystallization is moderate. Simultaneous measurement of normal force (FN) and electrical resistance (R) has been performed to probe the process of isothermal crystallization at strain zero. Results reveal that, at the early stage of crystallization, FN is almost independent of time (t) while relative resistance (R/R0) changes slightly with increasing time t. However, a significant increment in FN and a remarkable change in R/R0 can be observed at the same critical time (tc), and the value of tc is dependent on the crystallization temperature and CB content, which is available for describing the isothermal crystallization as a characteristic parameter. It is found that tc is greater than induction time of crystallization (t0) due to the less sensitivity of mechanical and electrical responses than enthalpy to the structural changes in the composites. It is suggested that mechanical and electrical simultaneous measurement endows us a novel approach to probing the formation of percolation network involving in crystallization of polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fornes TD, Paul DR (2003) Polymer 44:3945. doi:https://doi.org/10.1016/S0032-3861(03)00344-6

    Article  CAS  Google Scholar 

  2. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP (2005) Thermochimica Acta 427:117. doi:https://doi.org/10.1016/j.tca.2004.09.001

    Article  CAS  Google Scholar 

  3. Qureshi N, Stepanov EV (2000) J Polym Sci: Polym Phys 38:1679. doi:10.1002/1099-0488(20000701)38:13<1679::AID-POLB10>3.0.CO;2-P

    Article  CAS  Google Scholar 

  4. Wu TM, Chang CC (2000) J Polym Sci: Polym Phys 38:2515. doi:10.1002/1099-0488(20001001)38:19<2515::AID-POLB30>3.0.CO;2-4

    Article  CAS  Google Scholar 

  5. Polyakova A, Stepanov EV (2001) J Polym Sci: Polym Phys J 39:1911. doi:https://doi.org/10.1002/polb.1165

    Article  CAS  Google Scholar 

  6. Mucha M, Marszlek J, Fidrych A (2000) Polymer 41:4137. doi:https://doi.org/10.1016/S0032-3861(99)00706-5

    Article  CAS  Google Scholar 

  7. Wunderlich B (1973) Macromolecular physics. Academic Press, New York, p 217

    Google Scholar 

  8. Karger-Kocsis J (1995) Polypropylene structure, blend and composites. Chapman & Hall, London, p 60

    Google Scholar 

  9. Hearle JWS (1982) Polymers and their properties: fundamentals of structure and mechanics. Halsted Press, New York, p 293

    Google Scholar 

  10. Chen Q, Fan YR, Zheng Q (2005) Chin J Polym Sci 23:423

    Article  CAS  Google Scholar 

  11. Carrot C, Guillet J, Boutahar K (1993) Rheol Acta 32:566. doi:https://doi.org/10.1007/BF00369073

    Article  CAS  Google Scholar 

  12. Boutahar K, Carrot C, Guillet J (1998) Macromolecules 31:1921. doi:https://doi.org/10.1021/ma9710592

    Article  CAS  Google Scholar 

  13. Friedrich C, Scheuchenpflug W, Neuhausler S, Rosch J (1995) J Appl Polym Sci 57:499. doi:https://doi.org/10.1002/app.1995.070570412

    Article  CAS  Google Scholar 

  14. Masuda T, Kitamura M, Onogi S (1981) J Rheol 25:453. doi:https://doi.org/10.1122/1.549625

    Article  CAS  Google Scholar 

  15. Payne AR (1965) J Appl Polym Sci 9:1073. doi:https://doi.org/10.1002/app.1965.070090323

    Article  CAS  Google Scholar 

  16. Voet A, Cook FR (1968) Rubber Chem Technol 41:1207

    Article  CAS  Google Scholar 

  17. Pan XD, Mckinley GH (1998) Langmuir 14:985. doi:https://doi.org/10.1021/la9711084

    Article  CAS  Google Scholar 

  18. Liu ZH, Song YH, Zhou JF, Zheng Q (2007) J Mater Sci 42:8757. doi:https://doi.org/10.1007/s10853-007-1858-5

    Article  CAS  Google Scholar 

  19. Doljack FA (1981) IEEE Trans Compon Hybrids Manuf Technol 4:372. doi:https://doi.org/10.1109/TCHMT.1981.1135838

    Article  Google Scholar 

  20. Song YH, Zheng Q (2007) J Appl Polym Sci 105:710. doi:https://doi.org/10.1002/app.26076

    Article  CAS  Google Scholar 

  21. Medalia AI (1986) Rubber Chem Technol 59:432

    Article  CAS  Google Scholar 

  22. Nakamura S, Saito K, Sawa G, Kitagawa K (1997) Jpn J Appl Phys 36:5163. doi:https://doi.org/10.1143/JJAP.36.5163

    Article  CAS  Google Scholar 

  23. Mucha M, Krolikowski ZJ (2003) Therm Anal Calorim 74:549. doi:https://doi.org/10.1023/B:JTAN.0000005193.66789.ea

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Nature Science Foundation of China (No. 20774085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Song, Y., Shangguan, Y. et al. Simultaneous measurement of normal force and electrical resistance during isothermal crystallization for carbon black filled high-density polyethylene. J Mater Sci 43, 4828–4833 (2008). https://doi.org/10.1007/s10853-008-2697-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2697-8

Keywords

Navigation