Skip to main content
Log in

Review of the role of the interphase in the control of composite performance on micro- and nano-length scales

  • Stretching the Endurance Boundary of Composite Materials: Pushing the Performance Limit of Composite Structures
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In fiber reinforced composites (FRCs), exhibiting heterogeneous structure at multiple length scales, the interphase phenomena at various length scales were shown to be of pivotal importance for the control of the performance and reliability of such structures. Various models based on continuum mechanics were used to describe effects of the macro- and meso-scale interphase on the mechanical response of laminates and large FRC parts, satisfactorilly. At the micro-scale, the interphase is considered a 3D continuum with ascribed average properties. Number of continuum mechanics models was derived over the last 50 years to describe the stress transfer between matrix and individual fiber with realtively good success. In these models, the interphase was characterized by some average shear strength, τa, and elastic modulus, Ea. On the other hand, models for tranforming the properties of the micro-scale interphase around individual fiber into the mechanical response of macroscopic multifiber composite have not been generally successfull. The anisotropy of these composite structures are the main reasons causing the failure of these models. The strong thickness dependence of the elastic modulus of the micro-scale interphase suggested the presence of its underlying sub-structure. On the nano-scale, the discrete molecular structure of the polymer has to be considered. The term interphase, originally introduced for continuum matter, has to be re-defined to include the discrete nature of the matter at this length scale. The segmental immobilization resulting in retarded reptation of chains caused by interactions with solid surface seems to be the primary phenomenon which can be used to re-define term interphase on the nano-scale. Thus, the Rubinstein reptation model and a simple percolation model were used to describe immobilization of chains near solid nano-particles and to explain the peculiarities in the viscoleastic response of nano-scale “interphase.” It has also been shown that below 5 nm, Bernoulli–Euler continuum elasticity becomes not valid and higher-order elasticity along with the proposed reptation dynamics approach can provide suitable means for bridging the gap in modeling the transition between the mechanics of continuum matter at the micro-scale and mechanics of discrete matter at the nano-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pukánszky B (2005) Eur Polym J 41:645

    Article  Google Scholar 

  2. DiBenedetto AT (2001) Mater Sci Eng A302:74

    Article  CAS  Google Scholar 

  3. Hashin Z (2002) J Mech Phys Solids 50:2509

    Article  Google Scholar 

  4. Nairn JA (2007) Comput Mater Sci 40:525

    Article  CAS  Google Scholar 

  5. Lauke B, Schuller T (2002) Comp Sci Technol 62:1965

    Article  Google Scholar 

  6. Kalfus J, Jancar J (2007) Polymer 48:3935

    Article  CAS  Google Scholar 

  7. Martin RB, Burr DB, Sharkey NA (1998) Skeletal tissue mechanics. Springer, New York

    Book  Google Scholar 

  8. Galiotis C (2005) In: Beaumont PWR, Soutis C (eds) Multi-scale modelling of composite material systems. Woodhead Publ. Inc., Cambridge, p 33

  9. Jancar J (2006) Comp Interf 13:853

    Article  CAS  Google Scholar 

  10. Ji B, Gao H (2004) J Mech Phys Solids 52:1963

    Article  Google Scholar 

  11. Ji B, Gao H (2006) Comp Sci Technol 66:1212

    Article  CAS  Google Scholar 

  12. Fantner G, Oroudjev E, Schitter G, Golde LS, Thurner P, Finch MM, Turner P, Gutsmann T, Morse DE, Hansma H, Hansma PK (2006) Biophys J 90:1411

    Article  CAS  Google Scholar 

  13. Fantner GE, Rabinovych O, Schitter G, Thurner P, Kindt JH, Finch MM, Weaver JC, Golde LS, Morse DE, Lipman EA, Rangelow IW, Hansma PK (2006) Compos Sci Technol 66:1205

    Article  CAS  Google Scholar 

  14. Kim J-K, Mai Y-W (1998) Engineered interfaces in fiber reinforced composites, Ch 3. Elsevier, Amsterdam, p 43

    Chapter  Google Scholar 

  15. Droste DH, DiBenedetto AT (1969) J Appl Polym Sci 13:2149

    Article  CAS  Google Scholar 

  16. Cave NG, Kinloch AJ (1992) Polymer 33:1162

    Article  CAS  Google Scholar 

  17. Xie X-Q, Ranade SV, DiBenedetto AT (1999) Polymer 40:6297

    Article  CAS  Google Scholar 

  18. Kim J-K, Mai Y-W (1998) Engineered interfaces in fiber reinforced composites, Ch 4. Elsevier, Amsterdam, p 93

    Chapter  Google Scholar 

  19. Pluedemann EP (1982) Silane coupling agents. Plenum Press, New York

    Book  Google Scholar 

  20. DiBenedetto AT, Huang SJ, Birch D, Gomes J, Lee WC (1994) Compos Struct 27:73

    Article  Google Scholar 

  21. Jancar J (2008) Polym Compos 28:1

    Google Scholar 

  22. Jancar J (2006) Comp Sci Technol 66:3144

    Article  CAS  Google Scholar 

  23. Maranganti R, Sharma P (2007) J Mech Phys Solids 55:1823

    Article  CAS  Google Scholar 

  24. Kelarakis A, Giannelis EP (2007) Polymer 48:7567

    Article  CAS  Google Scholar 

  25. Narayanan RA, Thiyagarajan P, Zhu A-J, Ash BJ, Shofner M, Schadler LS, Kumar SK, Sternstein SS (2007) Polymer 48:5734

    Article  CAS  Google Scholar 

  26. Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Comp Sci Technol 66:1162

    Article  CAS  Google Scholar 

  27. Yu T, Lin J, Xu J, Chen T, Lin S, Tian X (2007) Comp Sci Technol 67:3219

    Article  CAS  Google Scholar 

  28. Drozdov AD, Jensen EA, Christiansen JC (2008) Int J Eng Sci 46:87

    Article  CAS  Google Scholar 

  29. Ha SR, Rhee KY, Kim HC, Kim JT (2008) Coll Surf A: Physicochem Eng Aspects 313–314:112

    Article  Google Scholar 

  30. Cosoli P, Scocchi G, Pricl S, Fermeglia M (2008) Micropor Mesopor Mater 107:169

    Article  CAS  Google Scholar 

  31. Jiang L, Zhang J, Wolcott MP (2007) Polymer 48:7632

    Article  CAS  Google Scholar 

  32. Sternstein SS, Zhu AJ (2002) Macromolecules 35:7262

    Article  CAS  Google Scholar 

  33. Kalfus J, Jancar J (2007) Polym Compos 28:365

    Article  CAS  Google Scholar 

  34. Kalfus J, Jancar J (2007) J Polym Sci: Part B: Polym Phys 45:1380

    Article  CAS  Google Scholar 

  35. Kalfus J, Jancar J (2007) Polym Compos 28:743

    Article  CAS  Google Scholar 

  36. Bettye L et al (1999) Nature 399:761

    Article  Google Scholar 

  37. Zidek J, Jancar J (2006) Key Eng Mater 334–335:857

    Google Scholar 

  38. Doi M, Edwards SF (2003) Theory of polymer dynamics. Oxford University Press, London

    Google Scholar 

  39. Lin Y-H (1985) Macromolecules 18:2779

    Article  CAS  Google Scholar 

  40. Zheng X, Sauer BB, van Alsten JG, Schwarz SA, Rafailovich MH, Sokolov J, Rubinstein M (1995) Phys Rev Lett 74:407

    Article  CAS  Google Scholar 

  41. Yoon DY, Suter UW, Sundararajan PR, Flory PJ (1975) Macromolecules 8:784

    Article  CAS  Google Scholar 

  42. Subbotin A, Semenov A, Doi M (1997) Phys Rev E 56:56

    Article  Google Scholar 

  43. deGennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, London

    Google Scholar 

  44. Jancar J, Kucera J, Vesely P (1991) J Mater Sci 26:4878

    Article  CAS  Google Scholar 

  45. Strobl G (2007) The physics of polymers. Springer, Berlin

    Google Scholar 

  46. Kouris D, Mi C (2007) Surf Sci 601:757

    Article  CAS  Google Scholar 

  47. Park SK, Gao X-L (2006) J Micromech Microeng 16:2355

    Article  Google Scholar 

  48. Sharma P, Ganti S (2004) J Appl Mech 71:663

    Article  Google Scholar 

  49. Sharma P, Ganti S, Bhate N (2003) Appl Phys Lett 82:535

    Article  CAS  Google Scholar 

  50. Chen Y, Lee JD, Eskandarian A (2003) Int J Eng Sci 41:61

    Article  Google Scholar 

  51. Chen Y, Lee JD, Eskandarian A (2004) Int J Solids Struct 41:2085

    Article  Google Scholar 

  52. Zang X, Sharma P, Johnsson HT (2007) Phys Rev B 75:155319

    Article  Google Scholar 

  53. Nikolov S, Han CS, Rabbe D (2007) J Solids Struct 44:1582

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the Czech Ministry of Education, Youth and Sports under grant MSM 0021630501 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jancar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jancar, J. Review of the role of the interphase in the control of composite performance on micro- and nano-length scales. J Mater Sci 43, 6747–6757 (2008). https://doi.org/10.1007/s10853-008-2692-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2692-0

Keywords

Navigation