Skip to main content
Log in

Grain growth in porous two-dimensional nanocrystalline materials

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Grain growth in two-dimensional polycrystals with mobile pores at the grain boundary triple junctions is considered. The kinetics of grain and pore growth are determined under the assumption that pore sintering and pore mobility are controlled by grain boundary and surface diffusion, respectively. It is shown that a polycrystal can achieve full density in the course of grain growth only when the initial pore size is below a certain critical value which depends on kinetic parameters, interfacial energies, and initial grain size. Larger pores grow without limits with the growing grains, and the corresponding grain growth exponent depends on kinetic parameters and lies between 2 and 4. It is shown that for a polycrystal with subcritical pores the average grain size increases linearly with time during the initial stages of growth, in agreement with recent experimental data on grain growth in thin Cu films and in bulk nanocrystalline Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gleiter H (1989) Prog Mater Sci 33:223. doi:https://doi.org/10.1016/0079-6425(89)90001-7

    Article  CAS  Google Scholar 

  2. Chaudhari PJ (1972) Vac Sci Technol 9:520. doi:https://doi.org/10.1116/1.1316674

    Article  CAS  Google Scholar 

  3. Upmanyu M, Srolovitz DJ, Gottstein G, Shvindlerman LS (1998) Interface Sci 6:289. doi:https://doi.org/10.1023/A:1008653704896

    Article  Google Scholar 

  4. Shvindlerman LS, Gottstein G, Ivanov VA, Molodov DA, Kolesnikov D, Lojkowski W (2006) J Mater Sci 41:7725. doi:https://doi.org/10.1007/s10853-006-0563-0

    Article  CAS  Google Scholar 

  5. Brook RJ (1976) In: Wang FFY (eds) Treatise on materials science and technology, vol 9. Academic, New York, pp 331–363

    Google Scholar 

  6. Yan MF, Cannon RM, Chowdhry U (1978) Am Ceram Bull 57:316

    Google Scholar 

  7. Gottstein G, Shvindlerman LS (1993) Acta metal mater 41:3267

    Article  Google Scholar 

  8. Gottstein G, Ma Y, Shvindlerman LS (2005) Acta mater 53:1535. doi:https://doi.org/10.1016/j.actamat.2004.12.006

    Article  CAS  Google Scholar 

  9. Gottstein G, Shvindlerman LS (2006) Scripta mater 54:1065. doi:https://doi.org/10.1016/j.scriptamat.2005.11.057

    Article  CAS  Google Scholar 

  10. Cahn JW (1962) Acta metal 10:789

    Article  CAS  Google Scholar 

  11. Gottstein G, Shvindlerman LS (1999) Grain boundary migration in metals. CRC Press, Boca Raton

    Google Scholar 

  12. Spears MA, Evans AG (1982) Acta metal 30:1281

    Article  Google Scholar 

  13. Riedel H, Svoboda J (1993) Acta metal mater 41:1929

    Article  CAS  Google Scholar 

  14. Humphreys FJ, Hatherly M (1996) Recrystallization and related annealing phenomena. Elsevier, Oxford

    Google Scholar 

  15. Mishin Y, Kaur I, Gust W (1995) Fundamentals of grain and interphase boundary diffusion. Wiley, Chichester

    Google Scholar 

  16. Schönfelder B, Gottstein G, Shvindlerman LS (2005) Acta mater 53:1597. doi:https://doi.org/10.1016/j.actamat.2004.12.010

    Article  Google Scholar 

  17. Sinclair CW, Hutchinson CR, Brechet Y (2007) Met Mater Trans A 38:821. doi:https://doi.org/10.1007/s11661-007-9106-9

    Article  Google Scholar 

  18. Fradkov VE, Udler D (1994) Adv Phys 43:739. doi:https://doi.org/10.1080/00018739400101559

    Article  CAS  Google Scholar 

  19. Cao P, Zhang B (2006) Int J Mod Phys B 20:3830. doi:https://doi.org/10.1142/S0217979206040441

    Article  CAS  Google Scholar 

  20. Krill III CE, Helfen L, Michels D, Natter H, Fitch A, Masson O, Birringer R (2001) Phys Rev Lett 86:842. doi:https://doi.org/10.1103/PhysRevLett.86.842

    Article  CAS  Google Scholar 

  21. Estrin Y, Gottstein G, Rabkin E, Shvindlerman LS (2000) Scripta mater 43:141. doi:https://doi.org/10.1016/S1359-6462(00)00383-3

    Article  CAS  Google Scholar 

  22. Klinger L, Rabkin E, Shvindlerman LS, Gottstein G (2008) J Mater Sci, to be submitted

Download references

Acknowledgements

This work was supported by the Russell Berrie Nanotechnology Institute (Technion) and by the RWTH Aachen through the Umbrella Cooperation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen Rabkin.

Appendix

Appendix

Dissolution of a circular pore at a triple junction

Let us consider a cylindrical pore of radius r located at a GB triple junction in a two-dimensional polycrystal. We will assume that pore dissolution is controlled by GB diffusion alone. The diffusion flux, j, along the GB (per unit length of the pore) is

$$ j=-\frac{D_{GB}\delta}{kT}\frac{\partial\sigma_{nn}}{\partial x}, $$
(A1)

where σnn is the normal stress at the GB, and x is the coordinate along the GB. D GB is the GB-self diffusion coefficient and we assume for simplicity that the diffusional width of the GB is equal to that of the surface. In the middle between two identical pores (x = 0) this flux should vanish because of symmetry reasons. In the steady state sintering regime the drift velocities of two grains normal to the GB should be constant, which means that the divergence of the flux j given by Eq. A1 is also constant. In this case

$$ \sigma_{nn}(x) = ax^2 + b, $$
(A2)

where a and b are constants. The distance between neighboring pores is 2l ≈ 2πL/n − 2r (see Fig. 1). The chemical potential of the atoms on the pore surface and at the triple junction between the pore surface and a GB are μ0 − γsΩ/r and μ0 + σnnΩ, respectively (here, γs is the surface energy and μ0 is the chemical potential of atoms in the crystal bulk). From the balance of these chemical potentials we get

$$ \left.\sigma_{nn}\right|_{x=l} = - \gamma_s/r. $$
(A3)

To find the unknown constants a and b we use the boundary condition A3 and the total force balance at the GB:

$$ -\gamma_s + \int\limits_0^l \sigma_{nn} (x)dx=0, $$
(A4)

which yields \(a=-\frac{3\gamma_s(l+r)}{2rl^3}.\) For the atomic flux to the pore we obtain from Eqs. A1 and A2

$$ j_{x=l}=\frac{3\gamma_sD_{GB}\delta}{2kT}\frac{l+r}{rl^2}. $$
(A5)

The rate of pore dissolution can be found from the condition of mass balance:

$$ 2\pi r\frac{dr}{dt} = \left.-3\Upomega j\right|_{x=l} $$
(A6)
$$ \frac{dr}{dt} = -\frac{9D_{GB}\delta\gamma_s\Upomega}{4\pi kT}\frac{l+r}{r^2l^2}. $$
(A7)

For lr

$$ \frac{d(r^3)}{dt}=-\frac{27D_{GB}\delta\gamma_s\Upomega}{4\pi kT}\frac{1}{l}\,\approx\,-\frac{27nD_{GB}\delta\gamma_s\Upomega}{4\pi^2 kT} \frac{1}{L}. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinger, L., Rabkin, E., Shvindlerman, L.S. et al. Grain growth in porous two-dimensional nanocrystalline materials. J Mater Sci 43, 5068–5075 (2008). https://doi.org/10.1007/s10853-008-2678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2678-y

Keywords

Navigation