Abstract
In this study we examine polyurethane bonds of varying thickness between anodised aluminium substrates. The performed shear tests showed an intriguing size effect of the kind “thinner equals softer”. This size effect occurs not only in the basic elasticity (relaxed state), but also in the viscoelastic behaviour of the tested material. The cause of such size effects is supposed to be found in the existence of so-called interphases or boundary layers, which may differ considerably from the bulk in terms of mechanical behaviour, thus having an enormous impact on thin bonds. In thick bonds, however, these interphases or boundary layers have a minor effect on the overall mechanical behaviour. To account for these experimental results in bond modelling, an extended phenomenological continuum mechanics-based model, which explicitly includes such size effects in its calculation, is developed and presented. For this purpose, an abstract structure parameter with its corresponding balance equation is established describing the formation of the interphases by means of a phase transition. This makes it possible to define the bond stiffness at a macroscopic level, without entering into the microstructure. The extended model brings up a set of model parameters, which are determined efficiently by an ES (evolution strategy). The study concludes with a summary and an outlook on our further research work.















Similar content being viewed by others
Notes
The extreme absorptivity of anodised surfaces becomes already obvious at this point: it is not possible to remove the marker ink, not even with acetone.
References
Bockenheimer C, Valeske B, Possart W (2002) Int J Adhes Adhes 22:349
Fata D, Bockenheimer C, Possart W (2005) In: Possart W (ed) Adhesion-current research and applications. Wiley-VCH, Weinheim, p 479
Krüger JK, Possart W, Bactavachalou R, Müller U, Britz T, Santuary R, Alnot P (2004) J Adhesion 80:585
Chung J, Munz M, Sturm H (2005) J Adhesion Sci Technol 19:1263
Possart W, Krüger JK, Wehlack C, Müller U, Petersen C, Bactavatchalou R, Meiser A (2004) C R Chimie 9:60
Bouchet J, Roche AA (2002) J Adhesion 78:799
Roche AA, Bouchet J, Bentadjine S (2002) Int J Adhes Adhes 22:431
Bouchet J, Roche AA, Jacquelin E (2002) J Adhesion Sci Technol 16:1603
Bouchet J, Roche AA, Hamelin P (2002) Thin Solid Films 355:270
Vanlandingham MR, Dagastine RR, Eduljee RF, McCullough RL, Gillespie JW Jr (1999) Compos Part A: Appl Sci Manuf 30:75
Wehlack C, Possart W, Krüger JK, Müller U (2007) Soft Mater 5:87
Schlimmer M, Hennemann OD, Hahn O (2004) AiF project 76
Schlimmer M, Bornemann J (2004) Berechnung und Dimensionierung von Klebverbindungen mit der Methode der Finiten Elemente und experimentelle Überprüfung der Ergebnisse. Forschungsbericht 1-2003, Schriftenreihe des Instituts für Werkstofftechnik der Universität Kassel, Kassel
Schlimmer M, Hahn O, Hennemann OD (2006) Methodenentwicklung zur Berechnung und Auslegung geklebter Stahlbauteile im Fahrzeugbau bei schwingender Beanspruchung. Proc Gemeinsame Forschung in der Klebtechnik-6. Kolloquium 21./22. Februar
Diebels S, Johlitz M, Steeb H, Batal J, Possart W (2007) J Phys: Conf Ser 62:34
Johlitz M, Steeb H, Diebels S, Batal J, Possart W (2007) Technische Mechanik, accepted
Johlitz M, Steeb H, Diebels S, Chatzouridou A, Batal J, Possart W (2007) J Mat Sci 42:9894
Steeb H, Diebels S (2004) Int J Solids Struct 41:5071
Goodman M, Cowin S (1972) Arch Rat Mech Anal 44(4):249
Helm D (2001) Formgedächtnislegierungen (Bericht-Nr. 3/2001 des Instituts für Mechanik, Kassel
Helm D (20077) Int J Numer Meth Eng 69:1997
Capriz G, Podio-Guidugli P, Williams W (1982) Meccanica 17:80
Capriz G (1980) Continua with microstructures. Springer, New York
Svendsen B (1999) Continuum Mech Therm 4:247
Svendsen B, Hutter K, Laloui L (1999) Continuum Mech Therm 4:263
Coleman B, Noll W (1963) Arch Rat Mech Anal 13:167
Coleman B, Gurtin ME (1967) J Chem Phys 47:597
Chadwick P (1974) Phil Trans Roy Soc Lond A 276:371
Alts T (1979) Prog Coll Pol Sci S 66:7367
Haupt P, Lion A, Backhaus E (2000) Int J Solids Struct 37:3633
Haupt P, Lion A (2001) A generalisation of the Mooney-Rivlin model to finite linear viscoelasticity Constitutive Models for Rubber. Swets & Zeitlinger, London
Haupt P, Lion A (2002) Acta Mech 159:87
Göktepe S, Miehe C (2005) J Mech Phys Solids 53:2259
Miehe C, Keck J (2000) J Mech Phys Solids 48:323
Miehe C, Göktepe S, Lulei F (2004) J Mech Phys Solids 52:2617
Miehe C, Göktepe S (2005) J Mech Phys Solids 53:2231
Keck J (1998) Zur Beschreibung finiter Deformationen von Polymeren, Experimente, Modellbildung, Parameteridentifikation und Finite-Elemente-Formulierung. Bericht-Nr. I-5 des Instituts für Mechanik (Bauwesen), Stuttgart
Reese S (2001) Thermomechanische Modellierung gummiartiger Polymerstrukturen. F01/4 Institut für Baumechanik und Numerische Mechanik, Hannover
Reese S, Govindjee S (1998) Mech Time-Depend Mater 1:357
Reese S, Govindjee S (1998) Int J Solids Struct 35:3455
Reese S, Wriggers P (1997) Comput Methods Appl Mech Eng 148:279
Reese S, Wriggers P (1999) Modelling of the thermomechanical material behaviour of rubber-like polymers-micromechanical motivation and numerical simulation (Dorfmann & Muhr (eds) Rotterdam, 1999), p 13
Lion A (1996) Continuum Mech Therm 8:153
Lion A (1997) Acta Mech 123:1
Lion A (1999) Rubber Chem Technol 72:410
Lion A (2000) Thermomechanik von Elastomeren. Bericht-Nr. 1/2000 des Instituts für Mechanik, Kassel
Sedlan K (2001) Viskoelastisches Materialverhalten von Elastomerwerkstoffen, Experimentelle Untersuchung und Modellbildung. Berichte des Instituts für Mechanik (2/2001), Universität Gesamthochschule Kassel, Kassel
Amin AFMS, Alam MS, Okui Y (2002) Mech Mater 34:75
Amin AFMS, Alam MS, Okui Y (2003) J Test Eval 31(6):524
Amin AFMS, Lion A, Sekita S, Okui Y (2006) Int J Plasticity 22:1610
Laiarinandrasana L, Piques R, Robisson A (2003) Int J Plasticity 19:977
Bergstrom JS, Boyce MC (1998) J Mech Phys Solids 56(5):931
Boyce MC, Arruda EM (2000) Rubber Chem Technol 73:504
Bergstrom JS, Boyce MC (2001) Macromolecules 34(3):614
Bergstrom JS, Boyce MC (2001) Mech Mater 33:523
Bergstrom JS, Boyce MC (2000) Mech Mater 32:627
Besdo D (2003) Int J Plast 19:1001
Besdo D (2003) Int J Plast 19:1019
Ihlemann J (2002) Kontinuumsmechanische Nachbildung hochbelasteter technischer Gummiwerkstoffe. Institut für Mechanik (Maschinenbau) Universität Hannover, Hannover
Lubliner J (1985) Mech Res Commun 12:93
Tallec PL, Kaiss A, Rahier C (1994) Int J Numer Meth Eng 37:1159
Kröner E (1960) Arch Ration Mech Anal 4:273
Lee EH, Liu DT (1967) J Appl Phys 38:19
Lee EH (1969) J Appl Mech 36:1
Mooney M (1940) J Appl Phys 11:582
Rivlin RS (1948) Phil Trans Roy Soc Lond A 241:379
Cahn JW, Hilliard J (1958) J Chem Phys 28:258
Scheday G (2003) Theorie und Numerik der Parameteridentifikation von Materialmodellen der finiten Elastizität und Inelastizität auf der Grundlage optischer Feldmessmethoden. Bericht-Nr. I-11 des Instituts für Mechanik (Bauwesen), Stuttgart
Schwefel HP (1995) Evolution and Optimum Seeking. Wiley, New York
Rechenberg I (1973) Evolutionsstrategie: optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart
Acknowledgements
The authors are grateful to the DFG (Deutsche Forschungsgemeinschaft—German Research Foundation) for financial support under grant numbers Di 430/5-1 to 5-3 and Po 577/15-1.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Johlitz, M., Diebels, S., Batal, J. et al. Size effects in polyurethane bonds: experiments, modelling and parameter identification. J Mater Sci 43, 4768–4779 (2008). https://doi.org/10.1007/s10853-008-2674-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-008-2674-2

