Skip to main content

Advertisement

Log in

New type of low-dielectric composites based on o-cresol novolac epoxy resin and mesoporous silicas: fabrication and performances

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of o-cresol novolac epoxy (o-CNER)-based composites containing various amount of SBA-15, SBA-16, and MSU-X type mesoporous silicas were prepared, and their performances were evaluated. Morphological investigation by SEM reveals that the mesoporous silicas achieve a good dispersion in the o-CNER matrix due to an effective surface modification. The dielectric constants of all the composites were measured in the frequency range of 50–1,000 kHz. The investigation suggested that the dielectric constant could be reduced from 4.0 of the pure thermosetting o-CNER to 3.71, 3.73, and 3.73 by incorporating 5 wt.% SBA-15, SBA-16, and MSU-X, respectively. The reduction is attributed to incorporation of air voids stored within the mesoporous silicas, the air volume existing in the gaps on interfaces between the mesoporous silica and the matrix, and the free volume created by introducing large-sized domains. The composites present stable dielectric constants across the wide frequency range. An improvement of thermal stability of the o-CNER is achieved by incorporation of the mesoporous silica materials, while the enhanced interfacial interaction between the surface-modified mesoporous silica and the o-CNER matrix has also led to an improvement of toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wong CP, Wong MM (1999) IEEE T Compon Pack T 22:21. doi:https://doi.org/10.1109/6144.759349

    Article  CAS  Google Scholar 

  2. Enlow LR, Swanson DW, Naito CM (1999) Microelectron Reliab 39:515. doi:https://doi.org/10.1016/S0026-2714(98)00202-9

    Article  Google Scholar 

  3. Tai HJ, Wang JB, Chen JH et al (2001) J Appl Polym Sci 79:652. doi:https://doi.org/10.1002/1097-4628(20010124)79:4<652::AID-APP90>3.0.CO;2-U

    Article  CAS  Google Scholar 

  4. Kim WG, Lee JY (2002) Polymer 43:5713. doi:https://doi.org/10.1016/S0032-3861(02)00444-5

    Article  CAS  Google Scholar 

  5. Imai T, Sawa F, Nakano T et al (2006) IEEE T Dielect El In 13:319. doi:https://doi.org/10.1109/TDEI.2006.1624276

    Article  CAS  Google Scholar 

  6. Flandin L, Vouyovitch L, Beroual A et al (2005) J Phys D Appl Phys 38:144. doi:https://doi.org/10.1088/0022-3727/38/1/023

    Article  CAS  Google Scholar 

  7. Han JT, Cho KW (2005) Macromol Mater Eng 290:1184. doi:https://doi.org/10.1002/mame.200500051

    Article  CAS  Google Scholar 

  8. Gao JG, Zhao M, Li G (2006) J Appl Polym Sci 101:3023. doi:https://doi.org/10.1002/app.23670

    Article  CAS  Google Scholar 

  9. Liu YL, Chen CP, Jeng RJ (2003) J Appl Polym Sci 90:4047. doi:https://doi.org/10.1002/app.13159

    Article  CAS  Google Scholar 

  10. Yang PD, Zhao DY, Margolese DI et al (1998) Nature 396:152. doi:https://doi.org/10.1038/24132

    Article  CAS  Google Scholar 

  11. Zhao DY, Feng JL, Huo QS et al (1998) Science 279:548. doi:https://doi.org/10.1126/science.279.5350.548

    Article  CAS  Google Scholar 

  12. Zhao D, Yang P, Melosh N et al (1998) Adv Mater 10:1380. doi:https://doi.org/10.1002/(SICI)1521-4095(199811)10:16<1380::AID-ADMA1380>3.0.CO;2-8

    Article  CAS  Google Scholar 

  13. Baskaran S, Liu J, Domansky K et al (2000) Adv Mater 12:291. doi:https://doi.org/10.1002/(SICI)1521-4095(200002)12:4<291::AID-ADMA291>3.0.CO;2-P

    Article  CAS  Google Scholar 

  14. Yang CM, Cho AT, Pan FM et al (2001) Adv Mater 13:1099. doi:https://doi.org/10.1002/1521-4095(200107)13:14<1099::AID-ADMA1099>3.0.CO;2-0

    Article  CAS  Google Scholar 

  15. Wang J, Zhang CR, Feng J (2005) Prog Chem 17:1001

    CAS  Google Scholar 

  16. Chen-Yang YW, Chen CW, Wu YZ et al (2005) Electrochem Solid-State Lett 8:F1. doi:https://doi.org/10.1149/1.1825311

    Article  CAS  Google Scholar 

  17. Lin JJ, Wand XD (2007) Polymer 48:318. doi:https://doi.org/10.1016/j.polymer.2006.10.037

    Article  CAS  Google Scholar 

  18. Cheng CF, Cheng HH, Cheng PW et al (2006) Macromolecules 39:7583. doi:https://doi.org/10.1021/ma060990u

    Article  CAS  Google Scholar 

  19. Wang N, Zhang J, Dai CY et al (2006) Eng Plast Appl 34:15

    Google Scholar 

  20. Zhao D, Sun J, Li Q et al (2000) Chem Mater 12:275. doi:https://doi.org/10.1021/cm9911363

    Article  CAS  Google Scholar 

  21. Jin ZW, Wang XD, Cui XG (2008) Microporous Mesoporous Mater 108:183

    Article  CAS  Google Scholar 

  22. Jin ZW, Wang XD, Cui XG (2008) J Non-Cryst Solids 353:2507. doi:https://doi.org/10.1016/j.jnoncrysol.2007.05.003

    Article  Google Scholar 

  23. Zhao DY, Huo QS, Feng JL et al (1998) J Am Chem Soc 120:6024. doi:https://doi.org/10.1021/ja974025i

    Article  CAS  Google Scholar 

  24. Prouzet E, Boissiere C, Patricia JK (2002) J Mater Chem 12:1553. doi:https://doi.org/10.1039/b111236h

    Article  CAS  Google Scholar 

  25. Morishige K, Tateishi N, Fukuma S (2003) J Phys Chem B 107:5177. doi:https://doi.org/10.1021/jp022137c

    Article  CAS  Google Scholar 

  26. Khodakov AY, Zholobenko VL, Bechara R et al (2005) Microporous Mesoporous Mater 79:29. doi:https://doi.org/10.1016/j.micromeso.2004.10.013

    Article  CAS  Google Scholar 

  27. Shi YF, Meng Y, Chen DH et al (2006) Adv Funct Mater 16:561. doi:https://doi.org/10.1002/adfm.200500643

    Article  CAS  Google Scholar 

  28. Yu CZ, Fan J, Tian BZ et al (2004) Chem Mater 16:889. doi:https://doi.org/10.1021/cm035011g

    Article  CAS  Google Scholar 

  29. Mascia L, Prezzi L, Haworth B (2006) J Mater Sci 41:1145. doi:https://doi.org/10.1007/s10853-005-3653-5

    Article  CAS  Google Scholar 

  30. Zunjarrao SC, Singh RP (2006) Compos Sci Technol 66:2296. doi:https://doi.org/10.1016/j.compscitech.2005.12.001

    Article  CAS  Google Scholar 

  31. Kutnjak Z, Vodopivec B, Kuscer D (2005) J Non-Cryst Solids 351:1261. doi:https://doi.org/10.1016/j.jnoncrysol.2005.02.016

    Article  CAS  Google Scholar 

  32. Hernandez-Torres J, Mendoza-Galvan A (2005) J Non-Cryst Solids 351:2029. doi:https://doi.org/10.1016/j.jnoncrysol.2005.05.011

    Article  CAS  Google Scholar 

  33. Yamada T, Uead T, Kitayama T (1982) J Appl Phys 53:4328. doi:https://doi.org/10.1063/1.331211

    Article  CAS  Google Scholar 

  34. Zhang YH, Lu SG, Li YQ et al (2005) Adv Mater 17:1056. doi:https://doi.org/10.1002/adma.200401330

    Article  CAS  Google Scholar 

  35. Wahab MA, Kim I, Ha CS (2003) Polymer 44:4705. doi:https://doi.org/10.1016/S0032-3861(03)00429-4

    Article  CAS  Google Scholar 

  36. Deligoz H, Yalcinyuva T, Ozgumus S, Yildirim S (2006) J Appl Polym Sci 100:810. doi:https://doi.org/10.1002/app.23174

    Article  CAS  Google Scholar 

  37. Choi MH, Chung IJ (2003) J Appl Polym Sci 90:2316. doi:https://doi.org/10.1002/app.12763

    Article  CAS  Google Scholar 

  38. Dean K, Krstina J, Tian W et al (2007) Macromol Mater Eng 292:415. doi:https://doi.org/10.1002/mame.200600435

    Article  CAS  Google Scholar 

  39. Bartczak Z, Argon AS, Cohen RE et al (1999) Polymer 40:2347. doi:https://doi.org/10.1016/S0032-3861(98)00444-3

    Article  CAS  Google Scholar 

  40. Thio YS, Argon AS, Cohen RE et al (2002) Polymer 43:3661. doi:https://doi.org/10.1016/S0032-3861(02)00193-3

    Article  CAS  Google Scholar 

  41. Argon AS, Cohen RE (2003) Polymer 44:6013. doi:https://doi.org/10.1016/S0032-3861(03)00546-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate financial support from the National Natural Science Foundation of China (Grant No.: 50573006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Wang, X. New type of low-dielectric composites based on o-cresol novolac epoxy resin and mesoporous silicas: fabrication and performances. J Mater Sci 43, 4455–4465 (2008). https://doi.org/10.1007/s10853-008-2655-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2655-5

Keywords