Skip to main content
Log in

Tensile strength improvement of an Mg–12Gd–3Y (wt%) alloy processed by hot extrusion and free forging

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An Mg–12Gd–3Y (wt%) alloy was prepared by conventional casting method using permanent steel mold. Then this alloy was subjected to hot processing, involving hot extrusion and free forging. Tensile strength at room temperature can be improved, with the highest ultimate tensile strength (UTS) value of 390.2 MPa achieved by hot extrusion in comparison to that of as-cast alloy. Temperature dependence of tensile strength is distinguishable for the as-extruded alloy, while the relative stability in UTS values of the alloy after being freely forged should be ascribed to the inter-crossing among deformation bands located at various orientations and the accommodation effect of twining lamellas resulting from forging process on plastic deformation during tensile test at elevated temperatures. Further annealing after hot processing can only have adequate influence on the tensile strength of as-forged alloy. For the alloy freely forged and annealed at 523 K for 4 h, the highest UTS (441.1 MPa) at room temperature is found, which should be mainly related to an evolution from the original as-forged microstructure with subgrains to a more stable combination of large and refined grains through dynamic recrystallization during free forging, and the stress at offset yield YS (384.3 MPa) is also comparable to that relatively high value of 396.9 MPa after solution treatment and isothermal aging of the as-cast alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anthony I, Kamado S, Kojima Y (2001) Mater Trans 42:1206

    Article  Google Scholar 

  2. Anthony I, Kamado S, Kojima Y (2001) Mater Trans 42:1212

    Article  Google Scholar 

  3. Smola B, Stulııkovaı I, von Buch F, Mordike BL (2002) Mater Sci Eng A 324:113

    Article  Google Scholar 

  4. Vostryı P, Smola B, Stulııkovaı I, von Buch F, Mordike BL (1999) Phys Stat Sol A175:491

    Article  Google Scholar 

  5. Nie JF, Muddle BC (2000) Acta Mater 48:1691

    Article  CAS  Google Scholar 

  6. Apps PJ, Karimzadeh H, King JF, Lorimer GW (2003) Scripta Mater 48:1023

    Article  CAS  Google Scholar 

  7. Honma T, Ohkubo T, Hono K, Kamado S (2005) Mater Sci Eng A 395:301

    Article  Google Scholar 

  8. Antion C, Donnadieu P, Perrard F, Deschamps A, Tassin C, Pisch A (2003) Acta Mater 51:5335

    Article  CAS  Google Scholar 

  9. Rokhlin LL (2003) Magnesium alloys containing rare earth metals. Taylor and Francis, London, p 1

    Google Scholar 

  10. Rokhlin LL, Nikitina NI (1994) Z Metallkd 85:819

    CAS  Google Scholar 

  11. Akhtar A, Teghtsoonian E (1969) Acta Metall 17:1339

    Article  CAS  Google Scholar 

  12. Akhtar A, Teghtsoonian E (1972) Philos Mag 25:897

    Article  CAS  Google Scholar 

  13. Sakai T, Jonas JJ (1984) Acta Metall 32:189

    Article  CAS  Google Scholar 

  14. Ion SE, Humphreys FJ, White SH (1982) Acta Metall 30:1909

    Article  CAS  Google Scholar 

  15. Belyakov A, Gao W, Miura H, Sakai T (1998) Metall Mater Trans 29A:2957

    Article  CAS  Google Scholar 

  16. Belyakov A, Sakai T, Miura H (2000) Mater Trans 41:476

    Article  CAS  Google Scholar 

  17. Belyakov A, Sakai T, Miura H, Tsuzaki K (2001) Philos Mag 81A:2629

    Article  Google Scholar 

  18. Sitdikov O, Goloborodko A, Sakai T, Miura H, Kaibyshev R (2003) Mater Sci Forum 426–432:381

    Article  Google Scholar 

  19. Sitdikov O, Sakai T, Goloborodko A, Miura H, Kaibyshev R (2004) Mater Trans 45:2232

    Article  CAS  Google Scholar 

  20. Sitdikov O, Sakai T, Goloborodko A, Miura H, Kaibyshev R (2004) Mater Sci Forum 467–470:421

    Article  Google Scholar 

  21. Sitdikov O, Sakai T, Goloborodko A, Miura H (2004) Scripta Mater 51:175

    Article  CAS  Google Scholar 

  22. Xing J, Yang XY, Miura H, Sakai T (2005) Mater Sci Forum 488–489:597

    Article  Google Scholar 

  23. Sivakesavam O, Rao IS, Prasad YVRK (1993) Mater Sci Technol 9:805

    CAS  Google Scholar 

  24. Kaibyshev R, Sitdikov O (1992) Phys Met Metall 73:635

    Google Scholar 

  25. Kaibyshev R, Sitdikov O (1994) Z Metallkd 85:738

    CAS  Google Scholar 

  26. Kaibyshev R, Sitdikov O (2000) Phys Met Metall 89:384

    Google Scholar 

  27. Nie JF (2003) Scr Mater 48:1009

    Article  CAS  Google Scholar 

  28. Wilson DV (1970) J Inst Met 98:133

    Google Scholar 

  29. Hilpert M, Styczynski A, Kiese J, Wagner L (1998) Magnesium alloys and their applications. Wiley, Weinheim, Germany, p 319

    Google Scholar 

  30. Mukai T, Yamanoi M, Watanabe H, Higashi K (2001) Scripta Mater 45:89

    Article  CAS  Google Scholar 

  31. Kaibyshev R, Sitdikov O (1995) Phys Met Metall 80:354

    Google Scholar 

  32. Kaibyshev R, Sitdikov O (1995) Phys Met Metall 80:470

    Google Scholar 

  33. Kaibyshev O, Valiev K (1987) Grain boundaries and properties of metals. Metallurgy, Moscow, p 214

  34. Shtremel MA (1999) Strength of alloys. Lattice defects. MSAI, Moscow, p 547

  35. Zaripov N, Vagapov A, Kaibyshev R (1987) Phys Met Metall 63:774

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. Zhang Kui of Beijing General Research Institute for Non-Ferrous Metals (GRINM), for his help in preparing parts of the experiment for hot processing. Many thanks go to Dr. Zhao Xin from GRINM. His efforts in giving lots of advice on free forging should also be highly appreciated. This research is supported by a National Supporting Project for Science and Technology (2006BAE04B04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, L., Chen, L. & Liu, Z. Tensile strength improvement of an Mg–12Gd–3Y (wt%) alloy processed by hot extrusion and free forging. J Mater Sci 43, 4493–4502 (2008). https://doi.org/10.1007/s10853-008-2650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2650-x

Keywords