Skip to main content
Log in

Synthesis of lamellar mesostructured calcium phosphates using n-alkylamines as structure-directing agents in alcohol/water mixed solvent systems

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lamellar mesostructured calcium phosphates constructed by ionic bonds were prepared by using n-alkylamines (n-CnH2n+1NH2, n = 8–18) at room temperature in the mixed solvent systems of aliphatic alcohol (CnH2n+1OH, n = 1–4) and water, and the synthetic conditions were investigated in detail. The mixed solvent systems suppressed the formation of crystalline calcium phosphates like brushite (CaHPO4·2H2O) and monetite (CaHPO4) at low temperatures, successfully affording pure lamellar mesostructured calcium phosphates. Other crystalline phases such as hydroxyapatite (Ca10(PO4)6(OH)2) were not formed under the conditions with the Ca/P molar ratios in the range of 0.7–1.0 in the starting mixtures. The Ca/P molar ratio of the lamellar mesostructured calcium phosphates was ca. 1.0, calculated by ICP and 31P MAS NMR data. Interestingly, the kind of alcohols strongly influenced the solubilities of calcium phosphate species and n-alkylamines, and then lamellar mesostructured phases were obtained with some morphological variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:988. doi:https://doi.org/10.1246/bcsj.63.988

    CAS  Google Scholar 

  2. Inagaki S, Fukushima Y, Kudoda K (1993) J Chem Soc Chem Commun 680. doi:https://doi.org/10.1039/c39930000680

  3. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710. doi:https://doi.org/10.1038/359710a0

    CAS  Google Scholar 

  4. Beck S, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834. doi:https://doi.org/10.1021/ja00053a020

    CAS  Google Scholar 

  5. Zhao D, Feng L, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548. doi:https://doi.org/10.1126/science.279.5350.548

    CAS  Google Scholar 

  6. Zhao XS, Lu GQ, Millar GJ (1996) Ind Eng Chem Res 35:2075. doi:https://doi.org/10.1021/ie950702a

    CAS  Google Scholar 

  7. Selvam P, Bhatia SK, Sonwane CG (2001) Ind Eng Chem Res 40:3237. doi:https://doi.org/10.1021/ie0010666

    CAS  Google Scholar 

  8. Sayari A (1996) Chem Mater 8:1840. doi:https://doi.org/10.1021/cm950585±

    CAS  Google Scholar 

  9. Corma A (1997) Chem Rev 97:2373. doi:https://doi.org/10.1021/cr960406n

    CAS  Google Scholar 

  10. Taguchi A, Schüth F (2005) Micropor Mesopor Mater 77:1. doi:https://doi.org/10.1016/j.micromeso.2004.06.030

    CAS  Google Scholar 

  11. Schüth F (2003) Angew Chem Int Ed 42:3604. doi:https://doi.org/10.1002/anie.200300593

    Google Scholar 

  12. Monma H (1995) Inorg Mater 2:401

    CAS  Google Scholar 

  13. Rodriguez-Lorenzo LM, Vallet-Regi M (2000) Chem Mater 12:2460. doi:https://doi.org/10.1021/cm001033g

    CAS  Google Scholar 

  14. Uota M, Arakawa H, Kitamura N, Yoshimura T, Tanaka J, Kijima T (2005) Langmuir 21:4724. doi:https://doi.org/10.1021/la050029m

    CAS  Google Scholar 

  15. Vallet-Regí M, Ruiz-González L, Izquierdo-Barba I, González-Calbet JM (2006) J Mater Chem 16:26. doi:https://doi.org/10.1039/b509744d

    Google Scholar 

  16. Huo Q, Leon R, Petroff PM, Stucky GD (1995) Science 268:1324. doi:https://doi.org/10.1126/science.268.5215.1324

    CAS  Google Scholar 

  17. Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8:1147. doi:https://doi.org/10.1021/cm960137h

    CAS  Google Scholar 

  18. Behrens P (1996) Angew Chem Int Ed 35:515. doi:https://doi.org/10.1002/anie.199605151

    CAS  Google Scholar 

  19. Sayari A, Liu P (1997) Micropor Mater 12:149. doi:https://doi.org/10.1016/S0927-6513(97)00059-X

    CAS  Google Scholar 

  20. Schüth F (2001) Chem Mater 13:3184. doi:https://doi.org/10.1021/cm011030j

    Google Scholar 

  21. Tiemann M, Fröba M (2001) Chem Mater 13:3211. doi:https://doi.org/10.1021/cm0110371

    CAS  Google Scholar 

  22. Kimura T (2005) Micropor Mesopor Mater 77:97. doi:https://doi.org/10.1016/j.micromeso.2004.08.023

    CAS  Google Scholar 

  23. Yu C, Tian B, Zhao D (2003) Curr Opin Solid State Mater Sci 7:191. doi:https://doi.org/10.1016/j.cossms.2003.10.004

    CAS  Google Scholar 

  24. Gao Q, Xu R, Chen J, Li R, Li S, Qui S, Yue YJ (1997) Chem Mater 9:457. doi:https://doi.org/10.1021/cm9602611

    CAS  Google Scholar 

  25. Kimura T, Sugawara Y, Kuroda K (1999) Chem Mater 11:508. doi:https://doi.org/10.1021/cm981036h

    CAS  Google Scholar 

  26. Mal NK, Fujiwara M, Ichikawa S, Kuraoka K (2002) J Ceram Soc Jpn 110:890

    CAS  Google Scholar 

  27. Mal NK, Ichikawa S, Fujiwara M (2003) Chem Commun 872. doi:https://doi.org/10.1039/b300323j

  28. Roca M, Haskouri JE, Cabrera S, Beltrán-Porter A, Alamo J, Beltrán-Porter D, Macros MD, Amorós P (1998) Chem Commun 1883. doi:https://doi.org/10.1039/a803896a

  29. Dasgupta S, Agarwal M, Datta A (2002) J Mater Chem 12:162. doi:https://doi.org/10.1039/b109472f

    CAS  Google Scholar 

  30. Jiménez-Jiménez J, Maireles-Torres P, Olivera-Pastor P, Rodríguez-Castellón E, Jiménez-López A, Jones DJ, Rozière J (1998) Adv Mater 10:812. doi:https://doi.org/10.1002/(SICI)1521-4095(199807)10:10≤812::AID-ADMA812≥3.0.CO;2-A

    Google Scholar 

  31. Jones DJ, Aptel G, Brandhorst M, Jacquin M, Jiménez-Jiménez J, Jiménez-López A, Maireles-Torres P, Piwonski I, Rodríguez-Castellón E, Zajac J, Rozière J (2000) J Mater Chem 10:1957. doi:https://doi.org/10.1039/b002474k

    CAS  Google Scholar 

  32. Bhaumik A, Inagaki S (2001) J Am Chem Soc 123:691. doi:https://doi.org/10.1021/ja002481s

    CAS  Google Scholar 

  33. Guo X, Ding W, Wang X, Yan Q (2001) Chem Commun 709. doi:https://doi.org/10.1039/b100630o

  34. Chang J-S, Park S-E, Gao Q, Férey G, Cheetham AK (2001) Chem Commun 859. doi:https://doi.org/10.1039/b009160j

  35. Tarafdar A, Biswas S, Pramanik NK, Pramanik P (2006) Micropor Mesopor Mater 89:204. doi:https://doi.org/10.1016/j.micromeso.2005.10.027

    CAS  Google Scholar 

  36. Mal NK, Ichikawa S, Fujiwara M (2002) Chem Commun 112. doi:https://doi.org/10.1039/b109948e

  37. Ozin GA, Varaksa N, Coombs N, Davies JE, Perovic DD, Ziliox M (1997) J Mater Chem 7:1601. doi:https://doi.org/10.1039/a702416i

    CAS  Google Scholar 

  38. Soten I, Ozin GA (1999) J Mater Chem 9:703. doi:https://doi.org/10.1039/a806045b

    CAS  Google Scholar 

  39. Yao J, Tjandra W, Chen YZ, Tam KC, Ma J, Soh B (2003) J Mater Chem 13:3053. doi:https://doi.org/10.1039/b308801d

    CAS  Google Scholar 

  40. Schmidt SM, McDonald J, Pineda ET, Verwilst AM, Chen Y, Josephs R, Ostefin AE (2006) Micropor Mesopor Mater 94:330. doi:https://doi.org/10.1016/j.micromeso.2006.04.006

    CAS  Google Scholar 

  41. Tokuoka Y, Ito Y, Kitahara K, Niikura Y, Ochiai A, Kawashima N (2006) Chem Lett 35:1220. doi:https://doi.org/10.1246/cl.2006.1220

    CAS  Google Scholar 

  42. Zhao YF, Ma J (2005) Micropor Mesopor Mater 87:110. doi:https://doi.org/10.1016/j.micromeso.2005.07.046

    CAS  Google Scholar 

  43. Ikawa N, Oumi Y, Kimura T, Ikeda T, Sano T (2006) Chem Lett 35:948. doi:https://doi.org/10.1246/cl.2006.948

    CAS  Google Scholar 

  44. Eanes ED, Gillessen IH, Posner AS (1965) Nature 208:365. doi:https://doi.org/10.1038/208365a0

    CAS  Google Scholar 

  45. Oliver SRJ, Ozin GA (1998) J Mater Chem 8:1081. doi:https://doi.org/10.1039/a708598b

    CAS  Google Scholar 

  46. Sivakumar GR, Girija EK, Karukura SN, Subramanian C (1998) Cryst Res Technol 33:197. doi:https://doi.org/10.1002/(SICI)1521-4079(1998)33:2≤197::AID-CRAT197≥3.0.CO;2-K

    CAS  Google Scholar 

  47. Larson MJ, Thorsen A, Jensen SJ (1985) Calcif Tissue Int 37:189. doi:https://doi.org/10.1007/BF02554840

    Google Scholar 

  48. Kim S, Ryu HS, Shin H, Jung HS, Hong KS (2005) Mater Chem Phys 91:500. doi:https://doi.org/10.1016/j.matchemphys.2004.12.016

    CAS  Google Scholar 

  49. Aue WP, Roufosse AH, Glimcher MJ, Griffin RG (1984) Biochemistry 23:6110. doi:https://doi.org/10.1021/bi00320a032

    CAS  Google Scholar 

  50. Miquel JL, Facchini L, Legrand AP, Rey C, Lemaitre J (1990) Colloids Surfaces 45:427. doi:https://doi.org/10.1016/0166-6622(90)80041-2

    CAS  Google Scholar 

  51. Furuichi K, Oaki Y, Imai H (2006) Chem Mater 18:229. doi:https://doi.org/10.1021/cm052213z

    CAS  Google Scholar 

  52. Simonutti R, Comotti A, Bracco S, Sozzani P (2001) Chem Mater 13:771. doi:https://doi.org/10.1021/cm001088i

    CAS  Google Scholar 

  53. Kooli F, Mianhui L, Alshahateet SF, Chen F, Yinghuai Z (2006) J Phys Chem Solids 67:926. doi:https://doi.org/10.1016/j.jpcs.2006.01.005

    CAS  Google Scholar 

  54. Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneji Sano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikawa, N., Oumi, Y., Kimura, T. et al. Synthesis of lamellar mesostructured calcium phosphates using n-alkylamines as structure-directing agents in alcohol/water mixed solvent systems. J Mater Sci 43, 4198–4207 (2008). https://doi.org/10.1007/s10853-008-2602-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2602-5

Keywords

Navigation