Advertisement

Journal of Materials Science

, Volume 43, Issue 10, pp 3728–3732 | Cite as

Deformation micromechanics of spider silk

  • Victoria L. Brookes
  • Robert J. YoungEmail author
  • Fritz Vollrath
Letter

The physical and mechanical properties of spider silk have been the subject of analysis and much speculation over the past 40 years [1, 2, 3, 4, 5, 6, 7, 8]. Their study has been complicated by the fact that the mechanical properties of these fibres have evolved over evolutionary times and thus respond in a complex way to both external (e.g. temperature and hydration [4]) and internal (e.g. pH environment, extrusion speed [8]) conditions during ‘spinning’. However, modern spectroscopic methods are rapidly changing our views of silks and their internal structures. This article sets out to examine the role of Raman Spectroscopy (RS) [6, 7] and the information it provides about the effect of mechanical deformation on the molecular strains and stresses in silks produced at different processing speeds.

Spider dragline silk combines great strength with unmatched elasticity. It has extensions to failure of up to 35% [1, 9] at tensile strengths up to 3 GPa and with moduli up to 10 GPa; all of...

Keywords

Natural Rubber Raman Spectroscopy Silk Fibre Spider Silk Fibre Deformation 

Notes

Acknowledgement

This work was sponsored by the EPSRC, which also supported one of the authors (VLB) through a research studentship.

References

  1. 1.
    Gosline JM, Demont ME, Denny MW (1986) Endeavour 10:37CrossRefGoogle Scholar
  2. 2.
    Grubb DT, Jelinski LW (1997) Macromolecules 30:2860CrossRefGoogle Scholar
  3. 3.
    Gosline JM, Denny MW, Demont ME (1984) Nature 309:551CrossRefGoogle Scholar
  4. 4.
    Cunniff PM, Fossey SA, Auerbach MA, Song JW (1994) ACS Symposium Series 544:234CrossRefGoogle Scholar
  5. 5.
    Kitagawa M, Kitayama T (1997) J Mater Sci 32:2005CrossRefGoogle Scholar
  6. 6.
    Sirichasit J, Young RJ, Vollrath F (2000) Polymer 41:1223CrossRefGoogle Scholar
  7. 7.
    Sirichaisit J, Brookes VL, Young RJ, Vollrath F (2003) Biomacromolecules 4:387CrossRefGoogle Scholar
  8. 8.
    Madsen B, Shao Z, Vollrath F (1999) Int J Biol Macromol 24:301CrossRefGoogle Scholar
  9. 9.
    Denny M (1976) J Exp Biol 65:483Google Scholar
  10. 10.
    Perez-Riguero J, Elices M, Llorca J, Viney C (2001) J Appl Polym Sci 82:2245CrossRefGoogle Scholar
  11. 11.
    Riekel C, Branden C, Craig C, Ferrero C, Heidelbach F, Muller M (1999) Int J Biol Macromol 24:179CrossRefGoogle Scholar
  12. 12.
    Riekel C, Vollrath F (2001) Int J Biol Macromol 29:203CrossRefGoogle Scholar
  13. 13.
    Shao Z, Vollrath F (2002) Nature 418:741CrossRefGoogle Scholar
  14. 14.
    Shao Z, Vollrath F, Sirichaisit J, Young RJ (1999) Polymer 40:2493CrossRefGoogle Scholar
  15. 15.
    Rousseau ME, Lefevre T, Beaulieu L, Asakura T, Pezolet M (2004) Biomacromolecules 5:2247CrossRefGoogle Scholar
  16. 16.
    Monti P, Taddei P, Freddi G, Asakura T, Tsukada M (2001) J Raman Spec 32:103CrossRefGoogle Scholar
  17. 17.
    Edwards HGM, Farwell DW (1995) J Raman Spec 26:901CrossRefGoogle Scholar
  18. 18.
    Tsukada M, Freddi G, Monti P, Bertoluzza A, Kasai N (1995) J Polym Sci Part B: Polym Phys 33:1995CrossRefGoogle Scholar
  19. 19.
    Monti P, Freddi G, Bertoluzza A, Kasai N, Tsukada M (1998) J Raman Spec 29:297CrossRefGoogle Scholar
  20. 20.
    Gillespie DB, Viney C, Yager P (1994) ACS Symposium Series 544:155CrossRefGoogle Scholar
  21. 21.
    Zheng SD, Li GX, Yao WH, Yu TY (1989) Appl Spectros 43:1269CrossRefGoogle Scholar
  22. 22.
    Shao Z, Young RJ, Vollrath F (1999) Int J Biol Macromol 24:295CrossRefGoogle Scholar
  23. 23.
    Young RJ (1995) J Text Inst 86:360CrossRefGoogle Scholar
  24. 24.
    van der Zwaag S, Northolt MG, Young RJ, Robinson IM, Galiotis C, Batchelder DN (1987) Polym Comm 28:276Google Scholar
  25. 25.
    Young RJ, Lu D, Day RJ, Knoff WF, Davis HA (1992) J Mater Sci 27:5431CrossRefGoogle Scholar
  26. 26.
    Young RJ, Lu D, Day RJ (1991) Polym Intl 24:71CrossRefGoogle Scholar
  27. 27.
    Young RJ, Eichhorn SJ (2007) Polymer 48:2CrossRefGoogle Scholar
  28. 28.
    Yeh WY, Young RJ (1999) Polymer 40:857CrossRefGoogle Scholar
  29. 29.
    Yeh WY, Young RJ (1994) Polymer 35:3844CrossRefGoogle Scholar
  30. 30.
    Sinsawat A, Putthanarat S, Magoshi Y, Pachter R, Eby RK (2002) Polymer 43:1323CrossRefGoogle Scholar
  31. 31.
    Termonia Y (1994) Macromolecules 27:7378CrossRefGoogle Scholar
  32. 32.
    Vollrath F, Porter D (2006) Appl Phys A 82:205CrossRefGoogle Scholar
  33. 33.
    Nishino T, Nakamae K, Takashi Y (1992) Polymer 33:1328CrossRefGoogle Scholar
  34. 34.
    Montes-Morán MA, Davies RJ, Riekel C, Young RJ (2002) Polymer 43:5219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Victoria L. Brookes
    • 1
  • Robert J. Young
    • 1
    Email author
  • Fritz Vollrath
    • 2
  1. 1.Materials Science Centre, School of MaterialsUniversity of ManchesterManchesterUK
  2. 2.Department of ZoologyUniversity of OxfordOxfordUK

Personalised recommendations