Skip to main content
Log in

Dynamic mechanical thermal analysis of all-PP composites based on β and α polymorphic forms

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

All polypropylene (all-PP) composites were manufactured by exploiting the polymorphic forms of PP, in which alpha (α)-PP tapes worked as reinforcement and beta (β)-PP served as matrix. The mechanical performance of the composite was investigated in a range of frequencies and temperatures using dynamic mechanical thermal analysis (DMTA). The volume fractions of matrix and reinforcement were estimated using optical microscope images. Both the DMTA and the static flexural bending tests revealed that the α-PP tapes act as an effective reinforcement for the β-PP matrix. Time–temperature superposition (TTS) was applied to estimate the stiffness of the composites as a function of frequency (f = 10−9...1023) in the form of a master curve. The Williams–Landel–Ferry (WLF) model described properly change in the experimental shift factors used to create the storage modulus versus frequency master curve. The activation energies for the α and β relaxations were also calculated by using the Arrhenius equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Houshyar S, Shanks RA, Hodzic A (2005) Macromol Mater Eng 290:45. doi:https://doi.org/10.1002/mame.200400158

    Article  CAS  Google Scholar 

  2. Bárány T, Karger-Kocsis J, Czigány T (2006) Polym Adv Technol 17:818. doi:https://doi.org/10.1002/pat.813

    Article  Google Scholar 

  3. Hine PJ, Ward IM, Jordan ND, Olley R, Bassett DC (2001) J Macromol Sci Phys 40B:959

    Article  Google Scholar 

  4. Amornsakchal T, Bassett DC, Olley RH, Hine PJ, Ward IM (2000) J Appl Polym Sci 78:787. doi:https://doi.org/10.1002/1097-4628(20001024)78:4≤787::AID-APP110≥3.0.CO;2-A

  5. Capiati NJ, Porter RS (1975) J Mater Sci 10:1671. doi:https://doi.org/10.1007/BF00554928

    Article  CAS  Google Scholar 

  6. Mead WT, Porter RS (1978) J Appl Polym Sci 22:3249. doi:https://doi.org/10.1002/app.1978.070221119

    Article  CAS  Google Scholar 

  7. Karger-Kocsis J (2007) Patentschrift DE 10237803B4, Institut für Verbundwerkstoffe GmbH

  8. Boiko YuM, Kovriga VV (1993) Intern J Polym Mater 22:209. doi:https://doi.org/10.1080/00914039308012076

    Article  CAS  Google Scholar 

  9. Wortmann FJ, Schulz KV (1995) Polymer 36:315. doi:https://doi.org/10.1016/0032-3861(95)91319-3

    Article  CAS  Google Scholar 

  10. Abraham T, Banik K, Karger-Kocsis J (2007) eXPRESS Polym Lett 1:519. doi:https://doi.org/10.3144/expresspolymlett.2007.74

    Article  CAS  Google Scholar 

  11. Banik K, Abraham T, Karger-Kocsis J (2007) Macromol Mater Eng 292:1280. doi:https://doi.org/10.1002/mame.200700180

    Article  CAS  Google Scholar 

  12. Varga J (2002) J Macromol Sci Part B-Phys 41:1121. doi:https://doi.org/10.1081/MB-120013089

    Article  Google Scholar 

  13. Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701. doi:https://doi.org/10.1021/ja01619a008

    Article  CAS  Google Scholar 

  14. Ferry JD (1970) Viscoelastic properties of polymers, 2nd edn, Wiley, New York, 292

  15. Padden FJ, Keith HD (1959) J Appl Phys 30:1479. doi:https://doi.org/10.1063/1.1734985

    Article  CAS  Google Scholar 

  16. Samuels RJ, Yee RY (1972) J Polym Phys Ed 10:385. doi:https://doi.org/10.1002/pol.1972.160100301

    Article  CAS  Google Scholar 

  17. Boyd RH (1985) Polymer 26:1123. doi:https://doi.org/10.1016/0032-3861(85)90240-X

    Article  CAS  Google Scholar 

  18. Hu WG, Schmidt-Rohr K (1999) Acta Polymerica 50:271. doi:https://doi.org/10.1002/(SICI)1521-4044(19990801)50:8≤271::AID-APOL271≥3.0.CO;2-Y

  19. Roy SK, Kyu T, St John Manley R (1988) Macromolecules 21:1741. doi:https://doi.org/10.1021/ma00184a035

    Article  CAS  Google Scholar 

  20. Ward IM, Hine PJ (2004) Polymer 45:1423. doi:https://doi.org/10.1016/j.polymer.2003.11.050

    Article  CAS  Google Scholar 

  21. Alcock B, Cabrera NO, Barkoula NM, Reynolds CT, Govaert LE, Peijs T (2007) Compos Sci Tech 67:2061. doi:https://doi.org/10.1016/j.compscitech.2006.11.012

    Article  CAS  Google Scholar 

  22. Amash A, Zugenmaier P (1997) J App Polym Sci 63:1143. doi:https://doi.org/10.1002/(SICI)1097-4628(19970228)63:9≤1143::AID-APP6≥3.0.CO;2-H

  23. Dutta NK, Edward GH (1997) J Appl Polym Sci 66:1101

    Article  CAS  Google Scholar 

  24. Alcock B, Cabrera NO, Barkoula N-M, Loos J, Peijs T (2006) Composites: Part A 37:716. doi:https://doi.org/10.1016/j.compositesa.2005.07.002

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the German Science Foundation for the financial support of this project (DFG Ka 1202/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Karger-Kocsis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, T.N., Siengchin, S. & Karger-Kocsis, J. Dynamic mechanical thermal analysis of all-PP composites based on β and α polymorphic forms. J Mater Sci 43, 3697–3703 (2008). https://doi.org/10.1007/s10853-008-2593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2593-2

Keywords

Navigation